Lazar got lost somewhere in the Cartesian plane, containing n straight lines. The only way to escape is by moving through a special point - a beautiful point. A point is called beautiful if it is an intersection point of at least $\left\lfloor\frac{n}{4}\right\rfloor$ lines and it has integer coordinates. Your task is to find a beautiful point and save Lazar.

Input

The first line of the file intersection.in contains an integer n - the number of straight lines. The next n lines comprise of 2 pairs of integers - the coordinates of the points, which denote the respective line: $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

Output

On the first line of the file intersection.out print 2 integers - the coordinates of the beautiful point. On the next line print m - the number of lines which define the beautiful point. The last line should contain m numbers - the indexes of the lines that you have chosen.

Constraints

It is guaranteed that a beautiful point exists.
$8 \leq n \leq 10^{5}$
$-10^{9} \leq x_{1}, y_{1}, x_{2}, y_{2} \leq 10^{9}$
$\left\lfloor\frac{n}{4}\right\rfloor \leq m \leq n$

Time limit: 0.3 sec .
Memory limit: $\mathbf{2 5 6}$ MB

Intersection
2023/2024 SEASON - SECOND ROUND

Embrace The Challenge

Sample test

Input (intersection.in)	Output (intersection.out)
$\begin{array}{\|lllll} \hline 12 & & & \\ 4 & 7 & 2 & 7 \\ 8 & 9 & 3 & 3 \\ 8 & 2 & 5 & 2 \\ 6 & 4 & 0 & 5 & \\ 8 & 5 & 1 & 2 \\ 8 & 12 & 6 & 6 \\ 1 & 8 & 3 & 3 \\ 5 & 3 & 8 & 0 \\ 14 & 15 & 8 & 7 \\ 7 & 4 & 4 & 6 \\ 9 & 8 & 5 & 6 \\ 3 & 8 & 9 & 4 \\ \hline \end{array}$	$\begin{array}{ll} 5 & 3 \\ 3 & \\ 6 & 8 \end{array}$

