SEASON 6 - ROUND FOUR - 100 points

After much hard work Ivancho finally made enough money to start his own software company! Now he is trying to connect his office in such a way that all his computers have internet. Unfortunately, the cable system he bought is very bad. It works in a peculiar way each computer is connected to each other computer with a cable. Information flows only one way through a cable. Ivancho wants one of the computers to be a "hub" i.e. such that all of its connections are outgoing. His office is already set up, but unfortunately it lacks a hub. Now Ivancho has been tasked with reconfiguring the connections, in order to make a hub. To do this he can flip the connections of the various computers. When he flips the connections of a computer all incoming connections become outgoing and vice versa. Help him by writing a program, which, after a series of flips, tells him whether which computer is the hub (or that a hub doesn't exist).

Note: We will assign each computer a unique index in the range [$0, \mathrm{~N}-1$]

Input

The first row of the file hub. in contains two positive integers \mathbf{N} and \mathbf{K} - the number of computers in the network and the number of times he will be flipping connections.
$\mathbf{N}^{\star}(\mathbf{N}-1) / \mathbf{2}$ lines follow. Each line contains two positive integers \mathbf{u} and \mathbf{v} which denote a one way connection from \mathbf{u} to \mathbf{v}.
\mathbf{K} series of flips follow. Each series is given in the following way:
A single integer \mathbf{P} - the number of computers, which are going to be flipped
\mathbf{P} unique positive integers follow - the indexes of the computers to be flipped.

Output

In the output file hub. out print the index of the hub after each series of flips. If there is no hub - print „-1".

Constraints

```
3 \leq N \leq 850
0}\leqK\leq60
1 \leq P \leq N-1
```

Time limit: $1.2 \mathbf{~ s e c}$
Memory limit: $\mathbf{2 5 6}$ MB

SEASON 6 - ROUND FOUR - 100 points

Example test

Input (hub.in)	Output(hub.out)
42	-1
31	1
23	
02	
21	
03	
10	
2	
21	
2	
20	
53	-1
41	
31	
30	
43	
40	
12	
20	
23	
24	
01	
3	
203	
4	
1320	
3	
124	

Clarifications (example 1)

After the first series of flips all connections of the computers 2 and 1 are flipped. There is no hub in the network so we print -1. After the second series of flips all connections of the computers 2 and 0 are flipped. The new network contains a hub - the computer with index 1.

