Coins

SEASON 7 - SECOND ROUND

You have an unlimited number of coins of $(n+1)$ types, the cheapest of which has denomination 1 and each of the next types has denomination a_{i} times greater than the previous one. You need to pay the sum s using as few coins as possible. Of course you can use multiple coins of the same denomination, but the sum of all coins must be equal to s.

Input

The first line of the file coins. in contains two integers separated by a space - \mathbf{n} and \mathbf{s} - the number of coins' types, excluding the cheapest one, and the sum to pay.

The second line contains n integers separated by spaces $-\mathrm{a}_{\mathrm{i}}$ - the number of times each of the next coins is more expensive than the previous one.

Output

In the output file coins.out print a single integer - the minimum number of coins required to pay the sum s .

Constraints

$1 \leq n \leq 10^{5}$
$0 \leq s \leq 10^{9}$
$2 \leq a_{i} \leq 10^{9}$

Time limit: 1.0 sec
Memory limit: $\mathbf{2 5 6}$ MB

Example test

Input (coins.in)	Output (coins.out)
342	4
322	2
32	
345	

