

You have an unlimited number of coins of (n + 1) types, the cheapest of which has denomination 1 and each of the next types has denomination a_i times greater than the previous one. You need to pay the sum *s* using as few coins as possible. Of course you can use multiple coins of the same denomination, but the sum of all coins must be equal to *s*.

Input

The first line of the file coins.in contains two integers separated by a space - **n** and **s** - the number of coins' types, excluding the cheapest one, and the sum to pay.

The second line contains *n* integers separated by spaces - a_i - the number of times each of the next coins is more expensive than the previous one.

Output

In the output file coins.out print a single integer – the minimum number of coins required to pay the sum s.

Constraints

 $1 \leq n \leq 10^{5}$ $0 \leq s \leq 10^{9}$ $2 \leq a_{i} \leq 10^{9}$

Time limit: 1.0 sec Memory limit: 256 MB

Example test

Input (coins.in)	Output (coins.out)
3 42	4
3 2 2	
3 2	2
3 4 5	