

The motivation for this problem is the game "Super Mario Bros".

There are **N** platforms at the same altitude. Each platform has a given length - platform number **i** has length equal to $\mathbf{a}[\mathbf{i}]$. Mario can jump from one platform to another in the following way:

If Mario is currently on a x-length platform, he can jump to one of the next x platforms. Formally, if currently Mario is on platform number i currently, he can reach the platforms with numbers i + 1, i + 2, ..., i + a[i] with one jump.

Mario is interested in the **minimum number** of jumps is to get from one given **starting** platform to a another given **end** platform. In addition, he will make **Q** such queries.

Help Mario by writing a program that can answer his queries.

Input

The first line of the file jumps.in contains N – the number of the platforms in Mario Land. The second like contains N numbers a[1], a[2], ..., a[N] – the lengths of the platforms.

The third line contains the number **Q**.

The **i**-th of the next **Q** lines contains the integers x[i] and y[i] (x[i] < y[i]) – the staring and ending platforms for the corresponding query.

Output

In the output file jumps.out print Q lines – the answers to the queries.

Constraints

 $2 \le N \le 10^5$ $1 \le Q \le 10^5$ $1 \le a[i] \le 10^5$

Time limit: 1.2 sec Memory limit: 256 MB

Examples	
Input (jumps.in)	Output (jumps.out)
5	2
15131	1
5	2
1 5	1
2 3	1
3 5	
4 5	
1 2	
9	3
1 2 1 2 1 2 1 2 1	3
4	3
1 6	5
1 5	
38	
1 9	