digits

SEASON 8 - SIXTH ROUND

For a natural number \mathbf{X} with sum of digits \mathbf{K} (in decimal numerical system), we will define $f(X)$ as:

- K, if $1 \leq X \leq 9$
- $f(K)$, if $X>9$

For example:
$\mathbf{f}(123)=\mathbf{f}(6)=6$
$f(444)=f(12)=f(3)=3$

You are given a number \mathbf{N}, such that it doesn't contain the digit $\mathbf{0}$ in its decimal notation. Let's consider all subsequences of consecutive digits of \mathbf{N} and apply the function $f()$ to each of them. It is obvious that the result will always be an integer from 1 to 9.

Write a program that for every integer from 1 to 9 , counts the number of subsequences of consecutive digits of \mathbf{N} that have it as a result of $\mathbf{f}()$ applied to them.

Input

The input file digits.in contains one line with the number \mathbf{N}.

Output

The output file digits.out must contain one line with 9 numbers - the number of subsequences of consecutive digits of \mathbf{N} with result of of $\mathbf{f}()$ applied to them being equal to $1,2,3, \ldots, 9$ (in this order).

Constraints

$1 \leq N<10^{100} 000$

Time limit: 1 sec

Memory limit: $\mathbf{2 5 6}$ MB

digits

SEASON 8 - SIXTH ROUND

Example test:

Input (digits.in)	Output (digits.out)
34288	11122113332

Explanation:

The sequences of consecutive digits of 34288 are:
$3,4,2,8,8,34,42,28,88,342,428,288,3428,4288$ и 34288
$f(28)=1$
$f(2)=2$
$f(3)=3$
$\mathrm{f}(4)=\mathrm{f}(4288)=4$
$f(428)=5$
$\mathrm{f}(42)=6$
$f(88)=f(34288)=f(34)=7$
$f(8)=f(8)=f(3428)=8$
$\mathrm{f}(288)=\mathrm{f}(342)=9$

