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What Are Turing Machines?

@ Invented by Alan Turing
@ Hypothetical machines
@ Formalise “computation”

Alan Turing, 1912-1954
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What Are Turing Machines?

Each Turing machine consists of
@ A finite set of symbols, including a special blank symbol (0)
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What Are Turing Machines?

Each Turing machine consists of
@ A finite set of symbols, including a special blank symbol (0)
@ A finite set of states, including a start state

@ A tape that is infinite in both directions, containing finitely
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What Are Turing Machines?

Each Turing machine consists of
@ A finite set of symbols, including a special blank symbol (0)
@ A finite set of states, including a start state
@ A tape that is infinite in both directions, containing finitely
many non-blank symbols
@ A head which points at one position on the tape
@ A set of transitions

e Ifin state s; and tape contains g, write gx then move
left/right and change to state s,
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Turing machine operation

@ Find a matching rule for the current state and tape symbol
@ If none found, halt
© Otherwise, apply the rule and repeat
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Example

@ Two symbols, (Jand a
@ Two states, A and B

@ Four rules
o All: A+ B T
e AAa:0—B A
e BO:A—A
e BA:O+A
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Graph notation
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Variations

@ Move or write
@ Explicit halt state
@ Only one infinite direction
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@ g; :<— Move but do not write
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Shorthand

@ g; :<— Move but do not write

® G1/92/Qs : g — Match any of g1, g2, g5
@ —g; : gx — Match any except g;
@ x :— Move right on any symbol
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Shorthand

q; :<— Move but do not write

G1/92/93 : gk — Match any of g1, g2, g3
—@j : gk — Match any except g;

* :— Move right on any symbol

q; : g« Write but do not move
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Shorthand

q; :<— Move but do not write

G1/92/93 : gk — Match any of g1, g2, g3
—@j : gk — Match any except g;

* :— Move right on any symbol

q; : g« Write but do not move

g; Change state only
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Composing Machines

Find first A to the left: FL(A)

A

° -
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Composing Machines

Find first A to the left: FL(A)

A

Write a blank: W(O)
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Composing Machines

Find first A to the left: FL(A)

A

Write a blank: W(OJ)

(W=

Find first ato the left and blank it:

% FL(A) L WO

~
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Transforming Machines

Simpler TMs can be used to simulate more general forms

@ Requires a procedure for “compiling” the more complex
machine

@ Proves that the simpler machine is just as powerful

Example: TMs as defined can be transformed to TMs with
half-infinite tape
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Half-infinite Tapes

3 (9—2|9G-1|G |G |G| q3

can instead be encoded as

WM |9 |9-1|F1 |G-2|Q |G-3| 03
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Half-infinite Tapes

The machine must be modified to:
@ Encode the initial input
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Half-infinite Tapes

The machine must be modified to:
@ Encode the initial input
@ Position the head on qq
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The machine must be modified to:
@ Encode the initial input
@ Position the head on qq
@ Perform «+— and — correctly
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Half-infinite Tapes

The machine must be modified to:
@ Encode the initial input
@ Position the head on qq
@ Perform «+— and — correctly
@ Keep track of which half itis in
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Shift To The Right

Insert a blank, shifting non-blank to the right
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Turing Machine Transformation

@ Each state A becomes two state A, and A_.
@ Each transition A g; : g; <~ B becomes
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Input Preparation

Interleaves input with blanks and places B

— SR

«: 0 — ‘m

*

SR

Y

Bruce Merry
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Multi-tape Machines

@ N tapes, each with a separate head

@ A current tape

@ Transitions specify which tape to use next
@ Input on the initial tape, others blank
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Multi-tape Machines

A multi-tape machine can transformed to a single-tape one
@ For each tape, add another with a head marker

90,0 | 90,1 | 90,2 | 90,3

O O T O

Go| %11 |12 G113
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Multi-tape Machines

A multi-tape machine can transformed to a single-tape one
@ For each tape, add another with a head marker

90,0 | 90,1 | 90,2 | 90,3

O O T O

Go| %11 |12 G113

T O [m] O

@ Interleave these 2N tapes into one
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Turing Completeness

A system is Turing-complete if it can emulate any Turing
Machine (ignoring finite memory limits)
@ All real-world programming languages

@ Many joke programming language e.g. INTERCAL,
Whitespace

@ Lambda calculus
@ Partial recursive functions
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Surprising Turing-Complete Systems

@ Conway’s Game of Life
@ Wang Tiles
@ C++ at compile time
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Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed
alphabet e.g.

o All: A+ B

eAA:0—B

eBl:A—A

eBaA:+A
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Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed
alphabet e.g.

o 1[0 A<+ 01

o 1a:0— 01

0100 A—1

e 01 A: 0«1
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Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed
alphabet e.g.

@ 11:01+« 01

@ 101:1— 01

@ 011:01 —>1

@ 0101:1+«1
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Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed
alphabet e.g.

@ 11:01101

@ 101:10101

@ 011:01011

@ 0101:111
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Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed
alphabet e.g.

@ 11:01101

@ 101:10101

@ 011:01011

@ 0101:111

1101101M10110101MO01101011MO101111
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Universal Turing Machines

There exists a Universal Turing Machine U

@ Take a machine T and an input /

@ Run machine U on the tape E(T)#/

@ The result will be the same as running T on /
U operates like a stored-program computer
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Languages In Computability

A language is a set of strings in an alphabet
@ Each string in a language is finite
@ A language can be infinite
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@ The set of all Bulgarian words
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@ The set of all Bulgarian words

@ The set of all English sentences
@ The set of all valid C++ programs
@ The set of all prime numbers
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Examples of Languages

@ The set of all Bulgarian words

@ The set of all English sentences

@ The set of all valid C++ programs

@ The set of all prime numbers

@ The set of all encodings of Turing machines that halt
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Examples of Languages

@ The set of all Bulgarian words

@ The set of all English sentences

@ The set of all valid C++ programs

@ The set of all prime numbers

@ The set of all encodings of Turing machines that halt
@ The set of all formal proofs
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Languages and Turing Machines

Turing Machines can classify strings with three outcomes
@ Haltin an accept state
@ Haltin a reject state
@ Run forever
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Recursive Languages

L is recursive or Turing-decidable if there is a TM T such that
@ T always halts (either accepts or rejects)
@ T accepts exactly the strings in L
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Recursively Enumerable Languages

L is recursively enumerable if there is a TM T such that
@ T accepts every string in L
@ T does not halt given a string not in L
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The Halting Problem

For a specific Turing Machine T
@ Does T halt given a blank tape?

@ Does E(T) belong to the language of Turing machines that
halt?

More generally:
@ |s the language recursively-enumerable?
@ |s the language Turing-decidable?
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The Halting Problem

Suppose H is a Turing Machine that takes E(T) as input and
decides whether T halts on blank input.
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The Halting Problem

Suppose H is a Turing Machine that takes E(T) as input and
decides whether T halts on blank input. Let

@ Ctransform E(T)to E(T'), where T’ first writes E(T) to
the tape then executes T
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The Halting Problem

Suppose H is a Turing Machine that takes E(T) as input and
decides whether T halts on blank input. Let

@ Ctransform E(T)to E(T'), where T’ first writes E(T) to
the tape then executes T

@ F be the machine

e 1y accept ‘Q/\_)*

reject

Bruce Merry Turing Machines



Universal Machines
Computability Languages
The Halting Problem

The Halting Problem

Suppose H is a Turing Machine that takes E(T) as input and
decides whether T halts on blank input. Let

@ Ctransform E(T)to E(T'), where T’ first writes E(T) to
the tape then executes T

@ F be the machine

e 1y accept ‘Q/\_)*

reject

Then F run on E(F) halts iff it does not.
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Non-deterministic Turing Machines

What if transitions are ambiguous?
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Non-deterministic Turing Machines

What if transitions are ambiguous?

* 11—

a:ab:a
—

A non-deterministic Turing Machine (NDTM) halts if there is any
choice of transitions that would lead to the halt state.

This machine is equivalent to the regex . xab
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Non-deterministic Computing Power

Anything computable with a NDTM is also computable with a
™

@ A TM can simulate all possible states of a NDTM
@ This could be far “slower” than the NDTM

Bruce Merry Turing Machines



Non-determinism
Complexity classes
Complexity Satisfiability

Outline

e Complexity

@ Complexity classes

Bruce Merry Turing Machines



Non-determinism
Complexity classes
Complexity Satisfiability

Polynomial Time

A Turing Machine runs in polynomial time if given an input of
size N it halts within f(N) steps, for some polynomial f.

A language is in P if a polynomial-time Turing Machine can
decide it.
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Polynomial Time

A Turing Machine runs in polynomial time if given an input of
size N it halts within f(N) steps, for some polynomial f.

A language is in P if a polynomial-time Turing Machine can
decide it.

Exercise: There is a language L and a machine T which halts in

polynomial time given a string from L, and never terminates
given a string not from L. Prove that L is in P.
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Non-deterministic Polynomial Time

A language is in NP if a non-deterministic Turing Machine can
accept it in polynomial time.

Every member of such a language has a certificate that can be
validated in polynomial time on a normal Turing Machine.
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Reductions

Consider two languages:
@ A, which has the alphabet X1 (A C ¥j)
@ B, which has the alphabet ¥, (B C ¥3)
A reduction from A to B is a computable function
f:Xy — X5

such that
acA < f(a)eB.
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Reductions

If A can be reduced to B, then an algorithm for deciding A is:
@ Compute f(a)
@ Test whether f(a) € B, using an algorithm for B

Thus, B is at least as “hard” as A.
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Reduction example

A N pilots are available to fly N planes. Each pilot is
only qualified to fly some of the planes. Is it
possible to assign each plane a different qualified
pilot? (Bipartite Matching)
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Reduction example

A N pilots are available to fly N planes. Each pilot is
only qualified to fly some of the planes. Is it
possible to assign each plane a different qualified
pilot? (Bipartite Matching)

B There are E one-way network connections
between V computers, each of which has a
capacity. Is it possible for computer P to send
information to computer Q at a rate of at least R?
(Network flow)

Bipartite matching can be reduced to network flow.
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NP-Complete

A problem (language) L is in NPC if
@ itis in NP; and
@ any problem in NP can be reduced to L in polynomial time.
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NP-Complete

A problem (language) L is in NPC if
@ itis in NP; and
@ any problem in NP can be reduced to L in polynomial time.

If any problem in NPC can be solved in polynomial time, then
P = NP.

Bruce Merry Turing Machines



Non-determinism
Complexity classes
Complexity Satisfiability

NP-Hard

A problem is NP-Hard if some problem from NP can be
reduced to it

@ Can include non-decision problems e.g. Travelling
Salesman

@ At least as hard as any problem in NPC
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Boolean Satisfiability

Given a boolean expression in N variables, can values for the
variables be found to make it true? e.g.

(avbVv-c)A(-bVvcVv-d)A(-aVvbVd)
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SAT is in NP

@ This is trivial: a non-determinisitic Turing Machine can
“guess” a solution and verify it in polynomial time.
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SAT is in NP

@ This is trivial: a non-determinisitic Turing Machine can
“guess” a solution and verify it in polynomial time.

@ Equivalently, any assignment that satisfies the condition
forms a certificate.
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@ Take a language L in NP
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Proof Outline

@ Take a language L in NP
@ Take the NDTM T that accepts L
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SAT is in NPC

Proof Outline

@ Take a language L in NP
@ Take the NDTM T that accepts L

@ Construct a boolean expression that can be satisfied iff T
terminates
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SAT is in NPC

Proof Outline

@ Take a language L in NP
@ Take the NDTM T that accepts L

@ Construct a boolean expression that can be satisfied iff T
terminates

@ [ has now been reduced to SAT
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SAT is in NPC

Variables

Values of variables correspond to one possible execution trace
Qg After t steps, the symbol / to the right of the head
is g (leftif i < 0)
St s After t steps, the machine is in state s
M; . After t steps, the next transition is via rule k
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SAT is in NPC

How many variables?

Lis in NP, so an input of length n can be accepted in at most
P(n) steps:

@ t need only range from 0 to P(n)

@ /i need only range from —P(n) to P(n)
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SAT is in NPC

Constraints

@ Initial state: Qq 4 iff the tape at i initially contains g
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SAT is in NPC

Constraints

@ Initial state: Qqj 4 iff the tape at / initially contains g
@ Single symbol: =(Q;jq A Qtiq) for g # ¢

@ Single transition: =(M; x A M i) for k # K’

@ Single state: ~(S;s A St¢) for s # &

Bruce Merry Turing Machines



Non-determinism
Complexity classes
Complexity Satisfiability

SAT is in NPC

Constraints

@ Initial state: Qqj 4 iff the tape at / initially contains g

@ Single symbol: =(Q;jq A Qtiq) for g # ¢

@ Single transition: =(M; x A M i) for k # K’

@ Single state: ~(S;s A St¢) for s # &

@ Transition: if state s # H, symbol g allows transitions
Ki,...,kmthen (Sis A Qroq) = (Mik, V...V Mig,)
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SAT is in NPC

Constraints

@ Initial state: Qqj 4 iff the tape at / initially contains g
@ Single symbol: =(Q;jq A Qtiq) for g # ¢
@ Single transition: =(M; x A M i) for k # K’
@ Single state: ~(S;s A St¢) for s # &
@ Transition: if state s # H, symbol g allows transitions
Ki,...,kmthen (Sts A Qroq) = Mk, V...V Myk,)
@ Timestep: if transition k is (q' < §’) then
° (Mt,k A Ot,i,q) - Qt+1,,'+1,q for i ;é 0
o Mix = Qui11,q
o Mix = Sti1,s
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SAT is in NPC

Constraints

@ Initial state: Qqj 4 iff the tape at / initially contains g
@ Single symbol: =(Q;jq A Qtiq) for g # ¢
@ Single transition: =(M; x A M i) for k # K’
@ Single state: ~(S;s A St¢) for s # &
@ Transition: if state s # H, symbol g allows transitions
Ki,...,kmthen (Sts A Qroq) = Mk, V...V Myk,)
@ Timestep: if transition k is (q' < §’) then
° (Mt,k A Ot,i,q) - Qt+1,,'+1,q for i ;é 0
o Mix = Qui11,q
o Mix = Sti1,s

@ Halt: SO,H V 81,/-/ V...V Sp(n)ﬁ

Bruce Merry Turing Machines



Complexity classes
Complexity Satisfiability

SAT is in NPC

Putting it all together

Final expression E is A of all the constraints
@ If T can reach the halt state then E can be satisfied
@ If E can be satisfied then M; x gives a way for T to halt
@ Therefore we've reduced L to satisfiability of £

Bruce Merry Turing Machines



Non-determinism
y classes
Complexity Satisfiability

Questions
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