Turing Machines

Bruce Merry

University of Cape Town

10 May 2012

Bruce Merry Turing Machines

<ロト <回 > < 注 > < 注 > 、

Outline

- Definition
- Building programs
- Turing Completeness
- 2 Computability
 - Universal Machines
 - Languages
 - The Halting Problem

3 Complexity

- Non-determinism
- Complexity classes
- Satisfiability

ヘロト 人間 ト ヘヨト ヘヨト

Definition Building programs Turing Completeness

Outline

Basics

Definition

- Building programs
- Turing Completeness

2 Computability

- Universal Machines
- Languages
- The Halting Problem

3 Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

What Are Turing Machines?

- Invented by Alan Turing
- Hypothetical machines
- Formalise "computation"

Alan Turing, 1912-1954

э

э

Definition Building programs Turing Completeness

What Are Turing Machines?

Each Turing machine consists of

● A finite set of symbols, including a special blank symbol (□)

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

What Are Turing Machines?

Each Turing machine consists of

- A finite set of symbols, including a special blank symbol (□)
- A finite set of states, including a start state

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition Building programs Turing Completeness

What Are Turing Machines?

Each Turing machine consists of

- A finite set of symbols, including a special blank symbol (□)
- A finite set of states, including a start state
- A tape that is infinite in both directions, containing finitely many non-blank symbols

ヘロト 人間 ト ヘヨト ヘヨト

Definition Building programs Turing Completeness

What Are Turing Machines?

Each Turing machine consists of

- A finite set of symbols, including a special blank symbol (□)
- A finite set of states, including a start state
- A tape that is infinite in both directions, containing finitely many non-blank symbols
- A head which points at one position on the tape

くロト (過) (目) (日)

Definition Building programs Turing Completeness

What Are Turing Machines?

Each Turing machine consists of

- A finite set of symbols, including a special blank symbol (□)
- A finite set of states, including a start state
- A tape that is infinite in both directions, containing finitely many non-blank symbols
- A head which points at one position on the tape
- A set of transitions

ヘロト 人間 ト ヘヨト ヘヨト

Definition Building programs Turing Completeness

What Are Turing Machines?

Each Turing machine consists of

- A finite set of symbols, including a special blank symbol (□)
- A finite set of states, including a start state
- A tape that is infinite in both directions, containing finitely many non-blank symbols
- A head which points at one position on the tape
- A set of transitions
 - If in state *s_i* and tape contains *q_j*, write *q_k* then move left/right and change to state *s_m*

・ロン・西方・ ・ ヨン・ ヨン・

Definition Building programs Turing Completeness

Turing machine operation

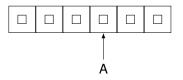
- Find a matching rule for the current state and tape symbol
- If none found, halt
- Otherwise, apply the rule and repeat

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

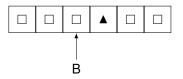


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - $A \square$: $\blacktriangle \leftarrow B$
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

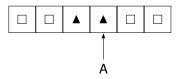


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

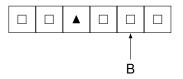


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

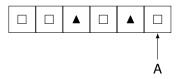


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

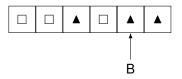


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

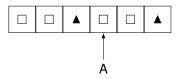


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

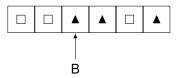


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

- $\bullet\,$ Two symbols, \Box and $\blacktriangle\,$
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A

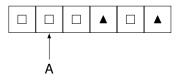


◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Example

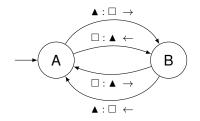
- Two symbols, \Box and \blacktriangle
- Two states, A and B
- Four rules
 - A \Box : $\blacktriangle \leftarrow$ B
 - A \blacktriangle : $\Box \rightarrow B$
 - $\mathsf{B} \square : \blacktriangle \to \mathsf{A}$
 - B ▲: □ ← A



◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition Building programs Turing Completeness

Graph notation



Bruce Merry Turing Machines

Definition Building programs Turing Completeness

Variations

- Move or write
- Explicit halt state
- Only one infinite direction

<ロト <回 > < 注 > < 注 > 、

Definition Building programs Turing Completeness

Outline

Basics

Definition

Building programs

Turing Completeness

2 Computability

- Universal Machines
- Languages
- The Halting Problem

3 Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Shorthand

• $q_i : \leftarrow$ Move but do not write

Bruce Merry Turing Machines

・ロト ・聞ト ・ヨト ・ヨト

Definition Building programs Turing Completeness

Shorthand

- *q_i* :← Move but do not write
- $q_1/q_2/q_3: q_k \rightarrow \text{Match any of } q_1, q_2, q_3$

ヘロト 人間 とくほとくほとう

₹ 990

Definition Building programs Turing Completeness

Shorthand

- $q_i : \leftarrow$ Move but do not write
- $q_1/q_2/q_3: q_k \rightarrow \text{Match any of } q_1, q_2, q_3$
- $\neg q_j : q_k \rightarrow \text{Match any except } q_j$

ヘロト 人間 とくほとくほとう

Definition Building programs Turing Completeness

Shorthand

- *q_i* :← Move but do not write
- $q_1/q_2/q_3: q_k \rightarrow \text{Match any of } q_1, q_2, q_3$
- $\neg q_j : q_k \rightarrow \text{Match any except } q_j$
- ∗ :→ Move right on any symbol

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Shorthand

- *q_i* :← Move but do not write
- $q_1/q_2/q_3: q_k \rightarrow \text{Match any of } q_1, q_2, q_3$
- $\neg q_j : q_k \rightarrow \text{Match any except } q_j$
- $* :\rightarrow$ Move right on any symbol
- $q_i : q_k$ Write but do not move

ヘロト ヘアト ヘビト ヘビト

Definition Building programs Turing Completeness

Shorthand

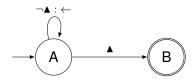
- *q_i* :← Move but do not write
- $q_1/q_2/q_3: q_k \rightarrow \text{Match any of } q_1, q_2, q_3$
- $\neg q_j : q_k \rightarrow \text{Match any except } q_j$
- $* :\rightarrow$ Move right on any symbol
- $q_i : q_k$ Write but do not move
- q_j Change state only

ヘロト ヘアト ヘビト ヘビト

Definition Building programs Turing Completeness

Composing Machines

Find first \blacktriangle to the left: FL(\blacktriangle)

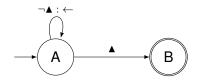


ヘロト 人間 とくほとくほとう

Definition Building programs Turing Completeness

Composing Machines

Find first \blacktriangle to the left: FL(\blacktriangle)



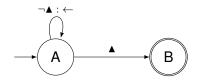
Write a blank: $W(\Box)$

・ロト ・ ア・ ・ ヨト ・ ヨト

Definition Building programs Turing Completeness

Composing Machines

Find first \blacktriangle to the left: FL(\blacktriangle)



Write a blank: $W(\Box)$

Find first ▲to the left and blank it:

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Transforming Machines

Simpler TMs can be used to simulate more general forms

- Requires a procedure for "compiling" the more complex machine
- Proves that the simpler machine is just as powerful

Example: TMs as defined can be transformed to TMs with half-infinite tape

ヘロト 人間 ト ヘヨト ヘヨト

Definition Building programs Turing Completeness

Half-infinite Tapes

$$\cdots \quad q_3 \quad q_{-2} \quad q_{-1} \quad q_0 \quad q_1 \quad q_2 \quad q_3 \quad \cdots$$

can instead be encoded as

$$\blacksquare \quad q_0 \quad q_{-1} \quad q_1 \quad q_{-2} \quad q_2 \quad q_{-3} \quad q_3 \quad \cdots$$

<ロト <回 > < 注 > < 注 > 、

Definition Building programs Turing Completeness

Half-infinite Tapes

The machine must be modified to:

Encode the initial input

<ロト <回 > < 注 > < 注 > 、

Definition Building programs Turing Completeness

Half-infinite Tapes

The machine must be modified to:

- Encode the initial input
- Position the head on q₀

・ロト ・回 ト ・ ヨト ・ ヨトー

Definition Building programs Turing Completeness

Half-infinite Tapes

The machine must be modified to:

- Encode the initial input
- Position the head on q₀
- Perform \leftarrow and \rightarrow correctly

イロン 不得 とくほ とくほとう

Definition Building programs Turing Completeness

Half-infinite Tapes

The machine must be modified to:

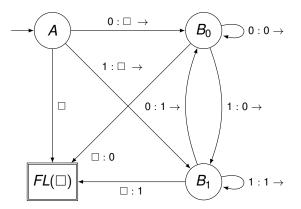
- Encode the initial input
- Position the head on q₀
- Perform \leftarrow and \rightarrow correctly
- Keep track of which half it is in

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Shift To The Right

Insert a blank, shifting non-blank to the right



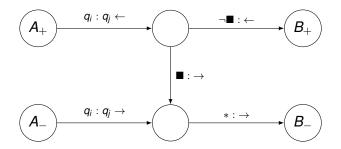
イロト 不得 とくほ とくほとう

ъ

Definition Building programs Turing Completeness

Turing Machine Transformation

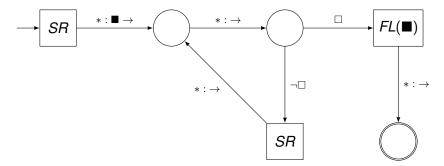
- Each state A becomes two state A_+ and A_- .
- Each transition $A q_i : q_j \leftarrow B$ becomes



Definition Building programs Turing Completeness

Input Preparation

Interleaves input with blanks and places



・ロト ・ ア・ ・ ヨト ・ ヨト

æ

Definition Building programs Turing Completeness

Multi-tape Machines

- N tapes, each with a separate head
- A current tape
- Transitions specify which tape to use next
- Input on the initial tape, others blank

くロト (過) (目) (日)

Definition Building programs Turing Completeness

Multi-tape Machines

A multi-tape machine can transformed to a single-tape one

For each tape, add another with a head marker

<i>q</i> _{0,0}	<i>q</i> _{0,1}	<i>q</i> _{0,2}	q _{0,3}	
		¢		
<i>q</i> _{1,0}	<i>q</i> _{1,1}	q _{1,2}	q _{1,3}	
¢				

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Multi-tape Machines

A multi-tape machine can transformed to a single-tape one

For each tape, add another with a head marker

<i>q</i> _{0,0}	<i>q</i> _{0,1}	<i>q</i> _{0,2}	q _{0,3}	
		¢		
<i>q</i> _{1,0}	<i>q</i> _{1,1}	<i>q</i> _{1,2}	<i>q</i> _{1,3}	
¢				

• Interleave these 2N tapes into one

$$\blacksquare \quad q_{0,0} \quad \Box \quad q_{1,0} \quad \uparrow \quad q_{0,1} \quad \Box \quad q_{1,1} \quad \Box \quad q_{0,2} \quad \uparrow \quad q_{1,2} \quad \Box \quad \cdots$$

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Outline

Basics

- Definition
- Building programs
- Turing Completeness

Computability

- Universal Machines
- Languages
- The Halting Problem

3 Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

Definition Building programs Turing Completeness

Turing Completeness

A system is Turing-complete if it can emulate any Turing Machine (ignoring finite memory limits)

- All real-world programming languages
- Many joke programming language e.g. INTERCAL, Whitespace
- Lambda calculus
- Partial recursive functions

ヘロト ヘアト ヘビト ヘビト

Definition Building programs Turing Completeness

Surprising Turing-Complete Systems

- Conway's Game of Life
- Wang Tiles
- C++ at compile time

イロト 不得 とくほ とくほとう

Universal Machines Languages The Halting Problem

Outline

Basics

- Definition
- Building programs
- Turing Completeness

2 Computability

- Universal Machines
- Languages
- The Halting Problem

3 Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed alphabet e.g.

- A □: ▲ ← B
- A \blacktriangle : $\Box \rightarrow B$
- $B \square : \blacktriangle \rightarrow A$
- B ▲: □ ← A

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed alphabet e.g.

- I □: ▲ ← 01
- 1 \blacktriangle : $\Box \rightarrow 01$
- 01 \Box : $\blacktriangle \rightarrow 1$
- O1 ▲: □ ← 1

ヘロト ヘアト ヘビト ヘビト

Universal Machines Languages The Halting Problem

Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed alphabet e.g.

- 1 1: 01 ← 01
- 1 01: 1 \rightarrow 01
- 01 1: 01 \rightarrow 1
- 01 01: 1 ← 1

ヘロト ヘアト ヘビト ヘビト

Universal Machines Languages The Halting Problem

Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed alphabet e.g.

- 1 1: 01 1 01
- 1 01: 1 01 01
- 01 1: 01 01 1
- 01 01: 1 1 1

ヘロト ヘアト ヘビト ヘビト

Universal Machines Languages The Halting Problem

Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T) in a fixed alphabet e.g.

- 1 1: 01 1 01
- 1 01: 1 01 01
- 01 1: 01 01 1
- 01 01: 1 1 1

1101101 10110101 01101011 0101111

ヘロト 人間 ト ヘヨト ヘヨト

Universal Machines Languages The Halting Problem

Universal Turing Machines

There exists a Universal Turing Machine U

- Take a machine T and an input I
- Run machine U on the tape $E(T) \blacklozenge I$
- The result will be the same as running T on I

U operates like a stored-program computer

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Outline

Basics

- Definition
- Building programs
- Turing Completeness

2 Computability

• Universal Machines

Languages

The Halting Problem

Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Languages In Computability

A language is a set of strings in an alphabet

- Each string in a language is finite
- A language can be infinite

ヘロト ヘ戸ト ヘヨト ヘヨト

Universal Machines Languages The Halting Problem

Examples of Languages

• The set of all Bulgarian words

Bruce Merry Turing Machines

<ロト <回 > < 注 > < 注 > 、

æ

Universal Machines Languages The Halting Problem

Examples of Languages

- The set of all Bulgarian words
- The set of all English sentences

イロン 不得 とくほ とくほとう

Universal Machines Languages The Halting Problem

Examples of Languages

- The set of all Bulgarian words
- The set of all English sentences
- The set of all valid C++ programs

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Examples of Languages

- The set of all Bulgarian words
- The set of all English sentences
- The set of all valid C++ programs
- The set of all prime numbers

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Examples of Languages

- The set of all Bulgarian words
- The set of all English sentences
- The set of all valid C++ programs
- The set of all prime numbers
- The set of all encodings of Turing machines that halt

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Examples of Languages

- The set of all Bulgarian words
- The set of all English sentences
- The set of all valid C++ programs
- The set of all prime numbers
- The set of all encodings of Turing machines that halt
- The set of all formal proofs

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Languages and Turing Machines

Turing Machines can classify strings with three outcomes

- Halt in an accept state
- Halt in a reject state
- Run forever

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Recursive Languages

L is recursive or Turing-decidable if there is a TM T such that

- T always halts (either accepts or rejects)
- T accepts exactly the strings in L

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Recursively Enumerable Languages

L is recursively enumerable if there is a TM T such that

- T accepts every string in L
- T does not halt given a string not in L

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

Outline

Basics

- Definition
- Building programs
- Turing Completeness

2 Computability

- Universal Machines
- Languages
- The Halting Problem

Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

The Halting Problem

For a specific Turing Machine T

- Does *T* halt given a blank tape?
- Does *E*(*T*) belong to the language of Turing machines that halt?

More generally:

- Is the language recursively-enumerable?
- Is the language Turing-decidable?

ヘロト 人間 ト ヘヨト ヘヨト

Universal Machines Languages The Halting Problem

The Halting Problem

Suppose *H* is a Turing Machine that takes E(T) as input and decides whether *T* halts on blank input.

イロト イポト イヨト イヨト

Universal Machines Languages The Halting Problem

The Halting Problem

Suppose *H* is a Turing Machine that takes E(T) as input and decides whether *T* halts on blank input. Let

• *C* transform *E*(*T*) to *E*(*T'*), where *T'* first writes *E*(*T*) to the tape then executes *T*

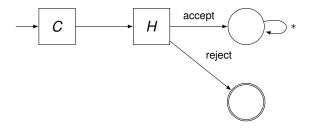
ヘロト ヘアト ヘビト ヘビト

Universal Machines Languages The Halting Problem

The Halting Problem

Suppose *H* is a Turing Machine that takes E(T) as input and decides whether *T* halts on blank input. Let

- *C* transform *E*(*T*) to *E*(*T'*), where *T'* first writes *E*(*T*) to the tape then executes *T*
- F be the machine



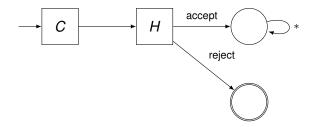
ヘロト 人間 ト ヘヨト ヘヨト

Universal Machines Languages The Halting Problem

The Halting Problem

Suppose *H* is a Turing Machine that takes E(T) as input and decides whether *T* halts on blank input. Let

- *C* transform *E*(*T*) to *E*(*T'*), where *T'* first writes *E*(*T*) to the tape then executes *T*
- F be the machine



Then F run on E(F) halts iff it does not.

Non-determinism Complexity classes Satisfiability

Outline

Basics

- Definition
- Building programs
- Turing Completeness

2 Computability

- Universal Machines
- Languages
- The Halting Problem

3 Complexity

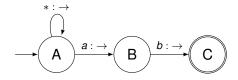
- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

Non-deterministic Turing Machines

What if transitions are ambiguous?

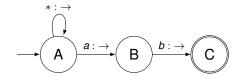


イロン 不同 とくほ とくほ とう

Non-determinism Complexity classes Satisfiability

Non-deterministic Turing Machines

What if transitions are ambiguous?



A non-deterministic Turing Machine (NDTM) halts if there is *any* choice of transitions that would lead to the halt state.

This machine is equivalent to the regex . *ab

- ⊒ →

Non-determinism Complexity classes Satisfiability

Non-deterministic Computing Power

Anything computable with a NDTM is also computable with a TM

- A TM can simulate all possible states of a NDTM
- This could be far "slower" than the NDTM

ヘロト 人間 ト ヘヨト ヘヨト

Non-determinism Complexity classes Satisfiability

Outline

Basics

- Definition
- Building programs
- Turing Completeness

2 Computability

- Universal Machines
- Languages
- The Halting Problem

3 Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

ъ

Non-determinism Complexity classes Satisfiability

Polynomial Time

A Turing Machine runs in polynomial time if given an input of size N it halts within f(N) steps, for some polynomial f.

A language is in P if a polynomial-time Turing Machine can decide it.

・ロン・西方・ ・ ヨン・ ヨン・

Non-determinism Complexity classes Satisfiability

Polynomial Time

A Turing Machine runs in polynomial time if given an input of size N it halts within f(N) steps, for some polynomial f.

A language is in P if a polynomial-time Turing Machine can decide it.

Exercise: There is a language L and a machine T which halts in polynomial time given a string from L, and never terminates given a string not from L. Prove that L is in P.

ヘロト 人間 ト ヘヨト ヘヨト

Non-determinism Complexity classes Satisfiability

Non-deterministic Polynomial Time

A language is in NP if a non-deterministic Turing Machine can accept it in polynomial time.

Every member of such a language has a certificate that can be validated in polynomial time on a normal Turing Machine.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Non-determinism Complexity classes Satisfiability

Reductions

Consider two languages:

- *A*, which has the alphabet Σ_1 ($A \subseteq \Sigma_1^*$)
- *B*, which has the alphabet Σ_2 ($B \subseteq \Sigma_2^*$)

A reduction from A to B is a computable function

$$f: \Sigma_1^* \to \Sigma_2^*$$

such that

$$a \in A \iff f(a) \in B.$$

イロト イポト イヨト イヨト

ъ

Non-determinism Complexity classes Satisfiability

Reductions

If A can be reduced to B, then an algorithm for deciding A is:

- Compute *f*(*a*)
- Test whether $f(a) \in B$, using an algorithm for B

Thus, *B* is at least as "hard" as *A*.

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

Reduction example

A N pilots are available to fly N planes. Each pilot is only qualified to fly some of the planes. Is it possible to assign each plane a different qualified pilot? (*Bipartite Matching*)

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Non-determinism Complexity classes Satisfiability

Reduction example

- A N pilots are available to fly N planes. Each pilot is only qualified to fly some of the planes. Is it possible to assign each plane a different qualified pilot? (*Bipartite Matching*)
- B There are E one-way network connections between V computers, each of which has a capacity. Is it possible for computer P to send information to computer Q at a rate of at least R? (Network flow)

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Bipartite matching can be reduced to network flow.

Non-determinism Complexity classes Satisfiability

NP-Complete

A problem (language) *L* is in *NPC* if

- it is in NP; and
- any problem in NP can be reduced to L in polynomial time.

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

NP-Complete

A problem (language) *L* is in *NPC* if

it is in NP; and

• *any* problem in *NP* can be reduced to *L* in polynomial time. If any problem in *NPC* can be solved in polynomial time, then P = NP.

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

NP-Hard

A problem is NP-Hard if some problem from *NP* can be reduced to it

- Can include non-decision problems e.g. Travelling Salesman
- At least as hard as any problem in NPC

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

Outline

Basics

- Definition
- Building programs
- Turing Completeness

2 Computability

- Universal Machines
- Languages
- The Halting Problem

3 Complexity

- Non-determinism
- Complexity classes
- Satisfiability

イロト イポト イヨト イヨト

ъ

Non-determinism Complexity classes Satisfiability

Boolean Satisfiability

Given a boolean expression in *N* variables, can values for the variables be found to make it true? e.g.

$$(a \lor b \lor \neg c) \land (\neg b \lor c \lor \neg d) \land (\neg a \lor b \lor d)$$

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

SAT is in NP

• This is trivial: a non-determinisitic Turing Machine can "guess" a solution and verify it in polynomial time.

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

SAT is in NP

- This is trivial: a non-determinisitic Turing Machine can "guess" a solution and verify it in polynomial time.
- Equivalently, any assignment that satisfies the condition forms a certificate.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Proof Outline

• Take a language L in NP

・ロト ・聞ト ・ヨト ・ヨト

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Proof Outline

- Take a language L in NP
- Take the NDTM T that accepts L

ヘロト 人間 とくほとくほとう

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Proof Outline

- Take a language L in NP
- Take the NDTM T that accepts L
- Construct a boolean expression that can be satisfied iff T terminates

イロト イポト イヨト イヨト

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Proof Outline

- Take a language L in NP
- Take the NDTM T that accepts L
- Construct a boolean expression that can be satisfied iff T terminates
- L has now been reduced to SAT

ヘロト ヘアト ヘビト ヘビト

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Values of variables correspond to one possible execution trace

- $Q_{t,i,q}$ After *t* steps, the symbol *i* to the right of the head is *q* (left if *i* < 0)
 - $S_{t,s}$ After *t* steps, the machine is in state *s*
 - $M_{t,k}$ After *t* steps, the next transition is via rule *k*

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Non-determinism Complexity classes Satisfiability

SAT is in NPC How many variables?

L is in NP, so an input of length *n* can be accepted in at most P(n) steps:

- t need only range from 0 to P(n)
- *i* need only range from -P(n) to P(n)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Constraints

• Initial state: $Q_{0,i,q}$ iff the tape at *i* initially contains *q*

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Constraints

- Initial state: $Q_{0,i,q}$ iff the tape at *i* initially contains *q*
- Single symbol: $eg(Q_{t,i,q} \land Q_{t,i,q'})$ for $q \neq q'$
- Single transition: $\neg(M_{t,k} \land M_{t,k'})$ for $k \neq k'$
- Single state: $\neg(S_{t,s} \land S_{t,s'})$ for $s \neq s'$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Constraints

- Initial state: $Q_{0,i,q}$ iff the tape at *i* initially contains *q*
- Single symbol: $\neg(\mathcal{Q}_{t,i,q} \land \mathcal{Q}_{t,i,q'})$ for $q \neq q'$
- Single transition: $\neg(M_{t,k} \land M_{t,k'})$ for $k \neq k'$
- Single state: $\neg(S_{t,s} \land S_{t,s'})$ for $s \neq s'$
- Transition: if state $s \neq H$, symbol q allows transitions k_1, \ldots, k_m then $(S_{t,s} \land Q_{t,0,q}) \implies (M_{t,k_1} \lor \ldots \lor M_{t,k_m})$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Constraints

- Initial state: $Q_{0,i,q}$ iff the tape at *i* initially contains *q*
- Single symbol: $eg(Q_{t,i,q} \land Q_{t,i,q'})$ for $q \neq q'$
- Single transition: $\neg(M_{t,k} \land M_{t,k'})$ for $k \neq k'$
- Single state: $\neg(S_{t,s} \land S_{t,s'})$ for $s \neq s'$
- Transition: if state $s \neq H$, symbol q allows transitions k_1, \ldots, k_m then $(S_{t,s} \land Q_{t,0,q}) \implies (M_{t,k_1} \lor \ldots \lor M_{t,k_m})$
- Timestep: if transition k is $(q' \leftarrow s')$ then
 - $(M_{t,k} \land Q_{t,i,q}) \implies Q_{t+1,i+1,q}$ for $i \neq 0$

•
$$M_{t,k} \implies Q_{t+1,1,q'}$$

•
$$M_{t,k} \implies S_{t+1,s'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Non-determinism Complexity classes Satisfiability

SAT is in NPC

Constraints

- Initial state: $Q_{0,i,q}$ iff the tape at *i* initially contains *q*
- Single symbol: $eg(Q_{t,i,q} \land Q_{t,i,q'})$ for $q \neq q'$
- Single transition: $\neg(M_{t,k} \land M_{t,k'})$ for $k \neq k'$
- Single state: $\neg(S_{t,s} \land S_{t,s'})$ for $s \neq s'$
- Transition: if state $s \neq H$, symbol q allows transitions k_1, \ldots, k_m then $(S_{t,s} \land Q_{t,0,q}) \implies (M_{t,k_1} \lor \ldots \lor M_{t,k_m})$
- Timestep: if transition k is $(q' \leftarrow s')$ then

•
$$(M_{t,k} \land Q_{t,i,q}) \Longrightarrow Q_{t+1,i+1,q}$$
 for $i \neq 0$
• $M_{t,k} \Longrightarrow Q_{t+1,1,q'}$
• $M_{t,k} \Longrightarrow S_{t+1,s'}$

• Halt: $S_{0,H} \vee S_{1,H} \vee \ldots \vee S_{P(n),H}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Non-determinism Complexity classes Satisfiability

SAT is in NPC Putting it all together

Final expression E is \land of all the constraints

- If T can reach the halt state then E can be satisfied
- If *E* can be satisfied then $M_{t,k}$ gives a way for *T* to halt
- Therefore we've reduced *L* to satisfiability of *E*

ヘロン 人間 とくほ とくほ とう

= 990

Non-determinism Complexity classes Satisfiability

Questions

Bruce Merry Turing Machines

◆□ > ◆□ > ◆豆 > ◆豆 >