
Basics
Computability

Complexity

Turing Machines

Bruce Merry

University of Cape Town

10 May 2012

Bruce Merry Turing Machines



Basics
Computability

Complexity

Outline

1 Basics
Definition
Building programs
Turing Completeness

2 Computability
Universal Machines
Languages
The Halting Problem

3 Complexity
Non-determinism
Complexity classes
Satisfiability

Bruce Merry Turing Machines



Basics
Computability

Complexity

Definition
Building programs
Turing Completeness

Outline

1 Basics
Definition
Building programs
Turing Completeness

2 Computability
Universal Machines
Languages
The Halting Problem

3 Complexity
Non-determinism
Complexity classes
Satisfiability

Bruce Merry Turing Machines



Basics
Computability

Complexity

Definition
Building programs
Turing Completeness

What Are Turing Machines?

Invented by Alan Turing
Hypothetical machines
Formalise “computation”

Alan Turing, 1912–1954
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What Are Turing Machines?

Each Turing machine consists of
A finite set of symbols, including a special blank symbol (�)

A finite set of states, including a start state
A tape that is infinite in both directions, containing finitely
many non-blank symbols
A head which points at one position on the tape
A set of transitions

If in state si and tape contains qj , write qk then move
left/right and change to state sm
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Turing machine operation

1 Find a matching rule for the current state and tape symbol
2 If none found, halt
3 Otherwise, apply the rule and repeat
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Example

Two symbols, � and N
Two states, A and B
Four rules

A �: N← B
A N: �→ B
B �: N→ A
B N: �← A

� � � � � �

A
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Graph notation

A B

� : N ←

N : � →

� : N →

N : � ←
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Variations

Move or write
Explicit halt state
Only one infinite direction
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Shorthand

qj :← Move but do not write

q1/q2/q3 : qk → Match any of q1,q2,q3

¬qj : qk → Match any except qj

∗ :→ Move right on any symbol
qj : qk Write but do not move
qj Change state only
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Composing Machines

Find first N to the left: FL(N)

A B
N

¬N :←

Write a blank: W(�)

A B
∗ : �

Find first Nto the left and blank it:

FL(N) W(�)∗
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Transforming Machines

Simpler TMs can be used to simulate more general forms
Requires a procedure for “compiling” the more complex
machine
Proves that the simpler machine is just as powerful

Example: TMs as defined can be transformed to TMs with
half-infinite tape

Bruce Merry Turing Machines



Basics
Computability

Complexity

Definition
Building programs
Turing Completeness

Half-infinite Tapes

· · · q3 q−2 q−1 q0 q1 q2 q3 · · ·

can instead be encoded as

� q0 q−1 q1 q−2 q2 q−3 q3 · · ·

Bruce Merry Turing Machines
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Half-infinite Tapes

The machine must be modified to:
Encode the initial input

Position the head on q0

Perform← and→ correctly
Keep track of which half it is in
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Shift To The Right

Insert a blank, shifting non-blank to the right

A B0

B1FL(�)

0 : � →

1 : � →

�

� : 0

0 : 0→

1 : 0→

� : 1

0 : 1→

1 : 1→

Bruce Merry Turing Machines
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Turing Machine Transformation

Each state A becomes two state A+ and A−.
Each transition A qi : qj ← B becomes

A+

A−

B+

B−

qi : qj ← ¬� :←

� :→

qi : qj → ∗ :→

Bruce Merry Turing Machines
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Input Preparation

Interleaves input with blanks and places �

SR

SR

FL(�)
∗ : �→ ∗ :→

¬�

�

∗ :→ ∗ :→
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Multi-tape Machines

N tapes, each with a separate head
A current tape
Transitions specify which tape to use next
Input on the initial tape, others blank
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Multi-tape Machines

A multi-tape machine can transformed to a single-tape one
For each tape, add another with a head marker

q0,0 q0,1 q0,2 q0,3 · · ·

� � ↑ � · · ·

q1,0 q1,1 q1,2 q1,3 · · ·

↑ � � � · · ·

Interleave these 2N tapes into one

� q0,0 � q1,0 ↑ q0,1 � q1,1 � q0,2 ↑ q1,2 � · · ·
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Turing Completeness

A system is Turing-complete if it can emulate any Turing
Machine (ignoring finite memory limits)

All real-world programming languages
Many joke programming language e.g. INTERCAL,
Whitespace
Lambda calculus
Partial recursive functions
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Surprising Turing-Complete Systems

Conway’s Game of Life
Wang Tiles
C++ at compile time
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Encoding Turing Machines

A Turing Machine T can be encoded as a string E(T ) in a fixed
alphabet e.g.

A �: N← B
A N: �→ B
B �: N→ A
B N: �← A

1101101�10110101�01101011�0101111
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Universal Turing Machines

There exists a Universal Turing Machine U
Take a machine T and an input I
Run machine U on the tape E(T )�I
The result will be the same as running T on I

U operates like a stored-program computer

Bruce Merry Turing Machines
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Languages In Computability

A language is a set of strings in an alphabet
Each string in a language is finite
A language can be infinite
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Examples of Languages

The set of all Bulgarian words

The set of all English sentences
The set of all valid C++ programs
The set of all prime numbers
The set of all encodings of Turing machines that halt
The set of all formal proofs
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Languages and Turing Machines

Turing Machines can classify strings with three outcomes
Halt in an accept state
Halt in a reject state
Run forever
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Recursive Languages

L is recursive or Turing-decidable if there is a TM T such that
T always halts (either accepts or rejects)
T accepts exactly the strings in L
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Recursively Enumerable Languages

L is recursively enumerable if there is a TM T such that
T accepts every string in L
T does not halt given a string not in L
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The Halting Problem

For a specific Turing Machine T
Does T halt given a blank tape?
Does E(T ) belong to the language of Turing machines that
halt?

More generally:
Is the language recursively-enumerable?
Is the language Turing-decidable?
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The Halting Problem

Suppose H is a Turing Machine that takes E(T ) as input and
decides whether T halts on blank input.

Let
C transform E(T ) to E(T ′), where T ′ first writes E(T ) to
the tape then executes T
F be the machine

C H
accept

reject

∗

Then F run on E(F ) halts iff it does not.
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Non-deterministic Turing Machines

What if transitions are ambiguous?

A B C

∗ :→

a :→ b :→

A non-deterministic Turing Machine (NDTM) halts if there is any
choice of transitions that would lead to the halt state.

This machine is equivalent to the regex .*ab

Bruce Merry Turing Machines
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Non-deterministic Computing Power

Anything computable with a NDTM is also computable with a
TM

A TM can simulate all possible states of a NDTM
This could be far “slower” than the NDTM
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Polynomial Time

A Turing Machine runs in polynomial time if given an input of
size N it halts within f (N) steps, for some polynomial f .

A language is in P if a polynomial-time Turing Machine can
decide it.

Exercise: There is a language L and a machine T which halts in
polynomial time given a string from L, and never terminates
given a string not from L. Prove that L is in P.
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A Turing Machine runs in polynomial time if given an input of
size N it halts within f (N) steps, for some polynomial f .

A language is in P if a polynomial-time Turing Machine can
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Non-deterministic Polynomial Time

A language is in NP if a non-deterministic Turing Machine can
accept it in polynomial time.

Every member of such a language has a certificate that can be
validated in polynomial time on a normal Turing Machine.
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Reductions

Consider two languages:
A, which has the alphabet Σ1 (A ⊆ Σ∗1)
B, which has the alphabet Σ2 (B ⊆ Σ∗2)

A reduction from A to B is a computable function

f : Σ∗1 → Σ∗2

such that
a ∈ A ⇐⇒ f (a) ∈ B.
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Reductions

If A can be reduced to B, then an algorithm for deciding A is:
Compute f (a)

Test whether f (a) ∈ B, using an algorithm for B
Thus, B is at least as “hard” as A.
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Reduction example

A N pilots are available to fly N planes. Each pilot is
only qualified to fly some of the planes. Is it
possible to assign each plane a different qualified
pilot? (Bipartite Matching)

B There are E one-way network connections
between V computers, each of which has a
capacity. Is it possible for computer P to send
information to computer Q at a rate of at least R?
(Network flow)

Bipartite matching can be reduced to network flow.
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NP-Complete

A problem (language) L is in NPC if
it is in NP; and
any problem in NP can be reduced to L in polynomial time.

If any problem in NPC can be solved in polynomial time, then
P = NP.
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NP-Hard

A problem is NP-Hard if some problem from NP can be
reduced to it

Can include non-decision problems e.g. Travelling
Salesman
At least as hard as any problem in NPC
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Outline

1 Basics
Definition
Building programs
Turing Completeness

2 Computability
Universal Machines
Languages
The Halting Problem

3 Complexity
Non-determinism
Complexity classes
Satisfiability
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Boolean Satisfiability

Given a boolean expression in N variables, can values for the
variables be found to make it true? e.g.

(a ∨ b ∨ ¬c) ∧ (¬b ∨ c ∨ ¬d) ∧ (¬a ∨ b ∨ d)
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SAT is in NP

This is trivial: a non-determinisitic Turing Machine can
“guess” a solution and verify it in polynomial time.

Equivalently, any assignment that satisfies the condition
forms a certificate.
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SAT is in NPC
Proof Outline

Take a language L in NP

Take the NDTM T that accepts L
Construct a boolean expression that can be satisfied iff T
terminates
L has now been reduced to SAT
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SAT is in NPC
Variables

Values of variables correspond to one possible execution trace
Qt ,i,q After t steps, the symbol i to the right of the head

is q (left if i < 0)
St ,s After t steps, the machine is in state s
Mt ,k After t steps, the next transition is via rule k
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SAT is in NPC
How many variables?

L is in NP, so an input of length n can be accepted in at most
P(n) steps:

t need only range from 0 to P(n)

i need only range from −P(n) to P(n)
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SAT is in NPC
Constraints

Initial state: Q0,i,q iff the tape at i initially contains q

Single symbol: ¬(Qt ,i,q ∧Qt ,i,q′) for q 6= q′

Single transition: ¬(Mt ,k ∧Mt ,k ′) for k 6= k ′

Single state: ¬(St ,s ∧ St ,s′) for s 6= s′

Transition: if state s 6= H, symbol q allows transitions
k1, . . . , km then (St ,s ∧Qt ,0,q) =⇒ (Mt ,k1 ∨ . . . ∨Mt ,km )

Timestep: if transition k is (q′ ← s′) then
(Mt,k ∧Qt,i,q) =⇒ Qt+1,i+1,q for i 6= 0
Mt,k =⇒ Qt+1,1,q′

Mt,k =⇒ St+1,s′

Halt: S0,H ∨ S1,H ∨ . . . ∨ SP(n),H
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SAT is in NPC
Putting it all together

Final expression E is ∧ of all the constraints
If T can reach the halt state then E can be satisfied
If E can be satisfied then Mt ,k gives a way for T to halt
Therefore we’ve reduced L to satisfiability of E
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Questions

?
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