Fruits

SEASON 7 - ROUND FOUR

Lora finally decided to quit her job and do something more interesting - selling fruits.
Currently she has \mathbf{N} fruits numbered from 1 to N , which she wants to sell. Unfortunately, her new workplace is so narrow that she can only put up one fruit for sale at a time. To make her life simpler, she just puts the fruits in order - i.e. fruit number i must be sold not later than fruit number i+1.

The price of fruit number \mathbf{i} at day 0 is A_{i}. Every day each fruit ripens and hence the price of fruit number \mathbf{i} increases by B_{i} each day. However, if fruit number \mathbf{i} is not sold by day K_{i}, it rots and has to be thrown away (i.e. sold for price of 0). Formally stated, the price of fruit number \mathbf{i} at day \mathbf{d} is:
$A_{i}+d^{*} B_{i}$ if $d<K_{i}$
0 if $d \geq K_{\text {i }}$
Lora can sell as many fruits as she wants in a single day, as long as she keeps the order, or she could decide to not sell any fruits in a single day. She is now wondering what the maximum profit she can get is.

Note: The days are counted starting from $\mathbf{0}$. If a certain fruit rots at day $\mathbf{0}$, then it can never be sold for a price different than 0 .

Input
The first line of the input file fruits. in contains a single integer \mathbf{N} - the amount of fruits.

The second line contains N space-separated integers - the prices of each fruit at day 0 (i.e. the array A).

The third line contains N space-separated integers - the price increases of each fruit for a day (i.e. the array B)

The last line contains N space-separated integers - the days at which each fruit rots (i.e. array K).

Output

On a single line of the output file fruits.out print a single number - the maximum profit Lora can achieve, considering the given constraints.

Constraints

```
1\leqN\leq5000
0}\leq\mp@subsup{K}{i}{}\leq1000
0}\leq\mp@subsup{A}{i}{}, \mp@subsup{B}{i}{}\leq100000000
```


Fruits

SEASON 7 - ROUND FOUR

Time limit: 0.6 sec
Memory limit: $\mathbf{2 5 6}$ MB

Sample test

Input (fruits.in)	Output (fruits.out)	
3		14
1	2	3
6	4	2
2	1	3

Clarifications

The optimal solution is to sell the first fruit at day 1 for $1+1^{*} 6=7$. Thus the second fruit rots, since it cannot be sold earlier than the first. We then sell the third fruit at day 2 for $3+2^{*} 2=7$. The total profit is $7+7=14$.

