Problem 5. Exams

In the Computer Science course of a given university there are $\bf N$ professors (numbered from 1 to N) and $\bf N*N$ classes (numbered from 1 to N*N). It is known that professor No. k is lecturer in classes with numbers - k, $\bf N$ + k, 2 * $\bf N$ + k ($\bf N$ - 1) * $\bf N$ + k. Because of the low attendance, the administration of the university decided to allow a student to take the exams only if he or she has attended at least one course taught by each professor.

N roommates (again numbered from 1 to **N**), studying in this university didn't know about this new policy. Every one of them visited different courses - the first one visited courses with numbers 1,2,3,...,N*N, the second one 2,4,6...,..., and the **N**-the one visited courses with numbers **N**, **2** * **N**, **3** * **N**,...,**N*N**.

Knowing that **K** of these roommates were allowed to take the exams, write a program **exams** which prints the smallest possible **N**, or 0 if such **N** doesn't exist.

Input:

On the first line of the input file exams.in there is only one integer K.

Output

The output file **exams.out** consists of only one number: **N**. You should print **0** if such number doesn't exist.

Note: when printing long integers use printf with "%I64d" or cout.

Constraints:

 $1 \le \mathbf{K} \le 2,000,000,000$

Time Limit: 0.5s

Example:

exams.in	exams.out
8	15