
DNA

For most of us biology is not on the list of the most interesting subjects. But not Ivancho –
he is a maniac on theme genetics. And now he wants to put his theoretical knowledge in use and
create an army of mutants. But to do that, he will have to play around with the deoxyribonucleic
acid, also known as DNA. Ivancho knows how the mutants should look like, so he knows what the
final form of their DNA should be. However, to make it real he will have to perform a number of
operations on an already existing DNA molecule.

We can look on the initial (the existent) DNA and the one, desired by Ivancho as
sequences of lowercase latin characters (strings). Ivancho wants to find a sequence as close

to the desired one as possible, using the following operations on the initial (current) sequence:
1) Move a part of the sequence from one place to another
2) Reverse the order of the letters in a part of the sequence
3) Remove a letter from the sequence
4) Insert a letter in the sequence
5) Ivancho also has a dictionary with smaller parts of DNA, which he can use to overlap

part of the sequence, replacing its contents

For a mutant to live it is important that the sequence you build has the same length as the
desired sequence. Ivancho also has a matrix which he uses to define the “genetic difference”
between two letters, that determines how close he is to the desired DNA.

As you all know this will take Ivancho too much time to do on his own. In addition he wants
to have the mutants as soon as possible (who doesn't want to rule over the world anyways), so he
is turning towards you, good programmers, to help him create his army. Write a program fixdna,
which by a given starting and desired DNA molecule, does a number of operations so that the final
sequence is as close as possible to the desired one.

Input: The first row of the input file fixdna.in will contain tree integers N, K and T, where N is the
length of the starting and final sequence, K is the size of the alphabet, composed of the first K
lowercase latin letter and T is the limit of operations you can do on the current sequence.
The following two rows will contain two strings – startSequence and targetSequence,
respectively the starting DNA sequence (the sequence we can modify) and the desired one.

It is true that:
The length of startSequence = the length of targetSequence = N;
startSequence and targetSequence contain only characters from the alphabet (the first K
lowercase latin letters)

The following K rows contain K integers each – this is the charDifference matrix which is used to
define the difference between the letters, where:
charDifference[i][i] = 0, charDifference[i][j] = charDifference[j][i] for each i ≠ j
The difference between characters c1 and c2 equals charDifference[c1 - 'a'][c2 - 'a']

The following row contains a single integer V - the size of the dictionary (number of contained
words)
The following V rows contain one string each wordi - the i-th word in the dictionary, containing only
characters from the alphabet.

Output: The output file fixdna.out should contain one row with the integer C - the number of
operations the program will do. 0 <= C <= T.
The following C rows should contain the parameters of the command that is to be executed. The
first parameter should be the command code (from 1 to 5). Operations should be in the order they
are to be executed.

Remark: indexing starts from 0.

Operations:

1) Move Substring
 Parameters: commandCode = 1, left, right, lettersOnTheLeft
 Action: We take the substring currentSequence[left...right] and we delete it from
currentSequence. After that, we add it between positions lettersOnTheLeft - 1 and
lettersOnTheLeft (we insert it in a way that we keep lettersOnTheLeft characters before the
substring).
 Conditions: 0 <= left <= right < |currentSequence|.
 0 <= lettersOnTheLeft <= |currentSequence| (position is calculated after removing the
chosen substring)

2) Reverse Substring
 Parameters: commandCode = 2, left, right
 Action: Reverse all elements in the substring currentSequence[left ... right]. The substring
keeps its position.
 Conditions: 0 <= left <= right < |currentSequence|

3) Delete Character
 Parameters: commandCode = 3, index
 Action: Deletes the symbol at position index.
 Condition: 0 <= index < |currentSequence|

Operation is allowed only if currentSequence is not empty

4) Insert Character
 Parameters: commandCode = 4, index, letter
 Action: All symbols in interval [index, |currentSequence| - 1] are moved with one position
to the right, after which the symbol letter is emplaced at position index.
 Condition: 0 <= index <= |currentSequence|.

letter is a character from the alphabet defined by K.
Current string is allowed to be longer than N.

5) Put Word

 Parameters: commandCode = 5, wordIndex, positionIndex
 Action: We take the word dictionary[wordIndex] (0-indexed) and put it over the sequence,
starting from positionIndex. The substring [positionIndex, positionIndex + |word|] is replaced
by the word.
 Condition: 0 <= wordIndex < |dictionary|.
 0 <= positionIndex <= N – |word|.
 The word should not get out of the boundaries of the sequence.

Grading:
If there is an invalid operation in the output file, the program receives 0 points for the test case.
If the length of the final sequence is not N, the program receives 0 points for the test case.

Otherwise we define yourScore = ∑ charDifference[finalSequence[i]][targetSequence[i]] for i =
{0 ... N - 1}
If minScore is the minimum score, received by all programs for this test case, your program
receives (minScore / yourScore) ^ 2 percent of the points for the test case

Limits:

In all tests:
K <= 26

In 10% of tests:
N <= 100
T <= 20
V <= 5
|wordi| <= 10
charDifference[i][j] <= 20

In 20% of tests:
N <= 1000
K <= 5
T <= 100
V = 0
charDifference[i][j] <= 20

In 20% of tests:
N <= 5000
T <= 500
V <= 10
|wordi| <= 25
charDifference[i][j] <= 30

In 25% of tests:
N <= 20 000
K <= 15
T <= 1000
V <= 25
|wordi| <= 50
charDifference[i][j] <= 40

In 25% of tests:
N <= 200 000
T <= 15 000
V <= 50
|wordi| <= 100
charDifference[i][j] <= 50

Time limit: 8 sec
Memory limit: 256 MB

Preliminary tests: 20
Final tests: 100

Sample test:

fixdna.in fixdna.out

10 3 5
abcbaaccbb
bbaaccacba
0 2 3
2 0 1
3 1 0
3
abc
aaba
bcc

5
1 3 6 2
3 0
5 0 6
2 6 8
4 6 a

Score: 0

Output explanation:
The current sequence after each operation is:
“abcbaaccbb” -> “abbaacccbb”
“abbaacccbb” -> “bbaacccbb”
“bbaacccbb” -> “bbaaccabc”
“bbaaccabc” -> “bbaacccba”
“bbaacccba” -> “bbaaccacba”

The score is 0 since for i={0..N-1} charDifference[startSequence[i]][currentSequence[i]] == 0.
In other words startSequence == currentSequence.

