
Mirrored game

Ivancho learned a new game. It is played on two wooden boards put one
above the other. Each boards is divided into a table containing N rows and N
columns. In each cell on the boards there is a chip - eigther white or black.

During the game, every turn you can take a chip from a cell from the first
board and a chip from its corresponding mirrored cell, and swap them. A mirrored
cell is a cell which is placed in the same column, but on the mirrored row. The
first row on the first table is mirror to the last row on the second table, the
second row on the first table is mirrored to the row before the last on the
second table, etc.

The goal of the game is to move all black chips to a single board. Ivancho
wants to become a great player, so he wants to learn to do that within as little
turns as possible.

Help him by writting a game chips, which by a givven starting condition of
the board, finds the minimum number of turns required to move all black chips to
one of the boards.

Input: the first line of the input file chips.in will contain a single integer N
- the number of rows and columns on each board.
After that N lines follow, each containg N zeros or ones, which describe a row
from the first table. A zero means that a white chip, a one means a black chip.
After that N lines follow, each containg N zeroes or ones. They discribe a row
from the second board.

Output: The output file chips.out should contain a single integer - the minimum
turns required to move all black chips to a single board, if that is possible,
or -1, if it is not.

Limits:
2 <= N <= 30

Time limit: 0.2 sec.
Memory limit: 256 MiB.

Remark: Reading and writing to a file can be done using the appropriate
statement. You can use the freopen statement from the standard library cstdio by
adding the flowing two lines at the beginning of your main function:

freopen ("chips.in", "r", stdin);
freopen ("chips.out", "w" , stdout);

Number of preliminary tests: 4
Number of final tests: 10

Example test:

chips.in chips.out

3
0 0 1
0 1 0
1 0 1
0 1 0
1 0 1
0 0 0

3

Output explanation:
Here is one possible solution:

Initial: After turn 1: After turn 2: After turn 3:

