Analysis for task "Mirrored game"
CodeIT, 2014-2015, Round 6

	The first thing we see is that in order to be able to move all black chips in one board there no two black chips can be in mirrored positions.	
	If this is fulfilled then we have to count the number of black chips in both boards. Then we will move all chips from the board which contains less black chips to the other board and the required number of moves is equal to the number of chips on the board we are moving from.

To illustrate the solution I will use a fragment from the author's source code (C++):
// size of the boards
int n;

// mat[row][col] - two-dimensional array with chips
// the first board is: rows = 0 ... n-1
// the second board is: rows = n ... 2n-1
// 0 = white chip, 1 = black chip
int mat[2 * MAX_N][MAX_N];

...

void solve ()
{
 // the number of black chips in each board
 int countBlack[2] = {0, 0};

 // iterate over each cell from the first board
 for (int row = 0; row < n; row++)
 {
 for (int col = 0; col < n; col++)
 {
 // find the mirrored row
 int invRow = 2*n - row - 1;

 // check if we have two black chips in mirrored positions
 // if so we print -1 and leave the function
 if (mat[row][col] && mat[invRow][col])
 {
 printf("-1\n");
 return;
 }

 // update the number of black chips in each board
 // in the array mat: 0 = white chip, 1 = black chip
 countBlack[0] += mat[row][col];
 countBlack[1] += mat[invRow][col];
 }
 }

 // if everything went OK during the iteration
 // the we have the count of the black chips on each board
 // and we print the smaller of the two counts
 printf("%d\n", std::min(countBlack[0], countBlack[1]));
}

Author: Nikola Stoyanov
