
Cross-Site Scripting Vulnerabilities
Jason Rafail, CERT® Coordination Center

Have you ever mistyped the address of a web site and received a message like
“Error - page name could not be found” or “The page you requested: page name
does not exist”? Certainly you have, and odds are you never gave it a second
thought; you simply corrected the address or went to a different site altogether. It
happens all the time. There are plenty of dead links, or links with typos to
stumble upon. However, when you encounter an error message like the two
listed above, you are actually witnessing a potential security breach—not
necessarily against the site, but rather against you directly.

Suppose you entered the following valid URL:

 http://www.example.com/FILENAME.html

If the document "FILENAME.html" did not exist, the web site could return an error
message such as

 <HTML>
 404 page does not exist: FILENAME.html

 </HTML>

Notice that "FILENAME.html" is a string that you entered. The web site has
included it in the page returned straight through to your browser.

This may seem harmless, but now imagine that you are browsing through
auctions on a popular site; let’s call it auctions.example.com. You come across
several auctions that someone has posted and would like to see more items that
the same person has for sale; let’s assume this person is a “bad guy” (though
you don’t know it) and call him BG12345. You click on BG12345’s website and
see a listing of his auctions. You click on a link on his page that interests you and
are taken to auction.example.com’s site displaying that item. You scroll down to
place a bid, and the auction site prompts you for your name and password to
sign in. You enter all the information and hit the submit button. Everything looks
fine, but in reality, the information that you submit is getting sent back to
BG12345. How can this be? The answer is that auction.example.com has what is
known as a cross-site scripting (CSS) vulnerability.

A CSS vulnerability is caused by the failure of a site to validate user input before
returning it to the client’s web-browser. The essence of cross-site scripting is that
an intruder causes a legitimate web server to send a page to a victim's browser
that contains malicious script or HTML of the intruder's choosing. The malicious
script runs with the privileges of a legitimate script originating from the legitimate
web server. The two error messages mentioned earlier could be examples of
such a situation. If instead of entering a page name, you entered an HTML or

 1

Text Box

Note: This is an historic document. We are no longer maintaining the content, but it may have value for research purposes. Pages linked to from the document may no longer be available.

script tag, the server would have returned that command to your browser, as
well. Your browser would assume the HTML or script tag was from
auction.example.com. It would run the script with the privileges that are set up for
that site, and when you looked at the website, everything would appear to be
normal.

BG12345 used the same method to deceive you. When you clicked on the link to
BG12345’s auction, the link was actually to an invalid page. The link may have
looked something like the example below, it used HTML and scripting to mimic
the auction site’s page exactly. However, when you clicked submit, it used a form
that passed your information back to BG12345. Now BG12345 can access your
account, place bids, and change your information. BG12345 can also change
your password and lock you out of your own account. Even worse, BG12345 can
see the credit card number that you registered with.

So what did BG12345 do? BG12345’s web site offered a link to
auction.example.com that looked something like this:

 <A HREF=http://auction.example.com/<script>alert(‘hello’)</script>">Click
Here

The "FILENAME.html" submitted to auction.example.com was,

 <script>alert(‘hello’)</script>

auction.example.com then used its ordinary routines to generate an error page to
you that read,

 <HTML>
 404 page not found: <script>alert(‘hello’)</script>

 </HTML>

In effect, BG12345 managed to "inject" a JavaScript program into the page
returned to you by auction.example.com. The JavaScript ran as though it
originated at auction.example.com, and could therefore process events in that
document. It also maintained communication with BG12345 by virtue of scripting
that BG12345 put in the link; this is the way a CSS vulnerability can be exploited
to "sniff" sensitive data from within a web page, including passwords, credit card
numbers, and any other arbitrary information you input. There are a number of
variants to this problem. Odds are that bank.example.com also has the same
vulnerability somewhere on its site. BG12345 could potentially access your bank
account and transfer funds using the same process.

So what can be done?

 2

• The best protection is to disable scripting when it isn’t required. However,
even this does not prevent the injection of malicious HTML. You should also
protect yourself by accessing security sensitive pages directly instead of
following links from unknown sources, or untrusted sites. For example, don’t
trust a link to your banking site that is in an email message. If you need to
access your banking site, go there directly. And, as always, exercise caution
when supplying personal information.

• Webmasters can also help. They can ensure that none of their pages return
user input that has not been validated. They can also encourage users to
disable scripting.

• Another solution is to have “signed scripting” such that any script with an
invalid or untrusted signature would not be run automatically. Suggestions of
this nature, however, would require changes to the current Internet standards
and specifications. Such changes would have to be submitted for
consideration to the World Wide Web Consortium (www.w3c.org) or the
Internet Engineering Task Force (www.ietf.org).

• If you notice an instance of cross-site Scripting notify the webmaster of that
site, and cc the CERT Coordination Center.

Unfortunately, security is often sacrificed in favor of functionality. But, if you
browse the Internet with scripting enabled, there is very little you can do to
protect your personal information. Cross-site scripting is easy to overlook, and
simple to correct. However, it can cause significant damage–your passwords and
credit card numbers can be unknowingly divulged to untrusted sources.

Appendix: References and additional information

http://www.cert.org/advisories/CA-2000-02.html

http://www.cert.org/tech_tips/malicious_code_mitigation.html

http://www.kb.cert.org/vuls/id/672683

http://www.kb.cert.org/vuls/id/642239

http://www.kb.cert.org/vuls/id/560659

“CERT” and “CERT Coordination Center” are registered in the U.S. Patent and Trademark Office.

Copyright 2001 Carnegie Mellon University

 3

http://www.w3c.org/
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.kb.cert.org/vuls/id/672683
http://www.kb.cert.org/vuls/id/642239
http://www.kb.cert.org/vuls/id/560659

	Cross-Site Scripting Vulnerabilities
	
	Jason Rafail, CERT® Coordination Center

	Appendix: References and additional information

