Problem 3. Arrays We are given **N** infinite non-decreasing sequences $arr_1, arr_2, ..., arr_N$, defined in the following manner: $arr_{i,1} = init_i$; $arr_{i,j} = arr_{i,j-1} + (arr_{i,j-1} * a_i + b_i) \bmod m_i$; j > 1. We are also given the sequence all, which is the sorted concatenation of $arr_1, arr_2, ..., arr_N$. Which is the number on the **q**-th position in all? **Input**: On the first line of the input file **arrays.in** there is one integer \mathbf{N} – the number of sequences. The next \mathbf{N} lines consist of four number each, the i-th of them contains the integers $init_i$, a_i , b_i , mod_i . Then follows \mathbf{M} - the number of queries and the next \mathbf{M} lines consist of one number \mathbf{q} each. Output: The output file arrays.out must contain M integers— the answers to the queries given in the input file, in the same order they are given in there. All indexes in the sequences start from 1. Note: when printing use printf with "%164d" or cout. ## Constraints: $1 \le N$, M, qi $\le 300,000$ $2 \le init_i$, a_i , b_i , $mod_i \le 1,000,000,000$ ## TIME LIMIT – 2 sec Example: | arrays.in | arrays.out | |-----------|------------| | 3 | 2 | | 2357 | 2 | | 2487 | 2 | | 2228 | 4 | | 5 | 6 | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | |