Escape

SEASON 6 - ROUND TWO - 250 points

There is a square shaped room, defined by the coordinates of its bottom left corner (0 , 0) and the coordinates of its top right corner (1000, 1000). There are N "unstable" fields segments ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$) where $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$ are between 0 and 1000 .

A robot needs to walk through the room in a straight line by entering through the left wall and exiting through the right wall, not crossing any "unstable" fields (but it can touch them). The robot is not a point (it has a certain width), so it cannot always escape from the room its path could be blocked by "unstable" fields.

Example of a successful escape:

Ivancho wants to construct a robot with maximum width, which would be able to escape from the room. He wonders what that width is.

Input

The first line of the input file escape. in contains the integer N. Each of the following N lines contain four integers $x 1, y 1, x 2, y 2$, describing the coordinates of the first and the second point of the current segment.

Output

In the output file escape. out write a single real number - the maximum width of the robot. Write the number with four digits after the decimal point.

Constraints

$1 \leq N \leq 60$
$0 \leq x 1, y 1, x 2, y 2 \leq 1000$

Time limit: 2.0 sec
Memory limit: $\mathbf{2 5 6}$ MB

Escape

SEASON 6 - ROUND TWO - 250 points

Example

Input (escape.in)	Output (escape.out)
48563.7460	
785618829598	
700757660762	
244135268178	
337687356674	

Notice - when outputting in C/C++ with printf use \%f for double and \%Lf for long double.

