SEASON 6 - ROUND FOUR - 100 points

For a sequence of \mathbf{N} integers $-\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{n-1}$ we define the \mathbf{k}-area of a number to be to be the sum of the number with index \mathbf{i}, the \mathbf{k} numbers to its left and the \mathbf{k} numbers to its right. Write a program, which for a given sequence of numbers and number \mathbf{k} outputs the index of the number with the largest k-area. If there is more than one largest area, output the smallest index.

Note: if before or after a given index there are less than k numbers, we only take into account their sum when calculating the k-area (i.e. we can imagine that the missing numbers are all 0).

Input

The first row of the file karea. in contains two positive integers \mathbf{N} and \mathbf{k} - the length of the sequence and the size of the area respectively.
\mathbf{N} integers follow - the numbers of the sequence.

Output

In the output file karea. out print the position of the number with the largest \mathbf{k}-area. In case there is more than one such are, print the smallest index. (Indexing begins at 0).

Constraints

```
3\leqN\leq10'
3 < k}\leq5*10\mp@subsup{0}{}{5
-1000 \leq a i < 1000
```

Time limit: 0.5 sec
Memory limit: $\mathbf{2 5 6}$ MB

Example test

Input (karea.in)	Output (karea. out)
51	0
$-109-10-5-9$	5
64	
$-610-9-5-63$	

Clarifications

Example 1: The values of the 1-areas in each position are as follows:
$0:-10+9=-1$
1: $-10+9+(-10)=-11$

K-area

SEASON 6 - ROUND FOUR - 100 points

2: $9+(-10)+(-5)=-6$
3: $-10+(-5)+(-9)=-24$
4: $-5+(-9)=-14$
The largest value is -1 at index 0 .

