Fence

Lora recently got tired of interacting with humans and decided to start a new life with her dogs far away from society. She now wants to surround her newly-built house with a fence, to be sure that no intruders will bother her.

We can represent Lora's house as a single point with coordinates (0,0). Near Lora's house are several poles, which we can also represent by integer coordinates. Lora can connect two poles with a fence along a straight line. She now wants to connect some pairs of poles in such a way that the poles and their connections form a convex polygon with minimal area, such that Lora's house is strictly inside it.

Your task is to write a program, that computes the minimal possible area of such convex polygon. To make things easier, you should print an integer - the area of the polygon multiplied by 2 (it is guaranteed that the area multiplied by 2 will be an integer).

Note: The connection of two poles cannot go straight through Lora's house!

Input

The first line of the file fence. in contains a single integer N - the amount of poles near Lora's house. The following N lines describe the poles. The i -th of those lines contains a pair of space-separated integers X_{i} and Y_{i} - the coordinates of the i-th pole.

Output

In the output file fence. out print a single integer - the minimum area of such convex polygon, multiplied by 2.

Constraints

$3 \leq N \leq 400$
$-10^{6} \leq \mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}} \leq 10^{6}$

Time limit: 1.0 sec
Memory limit: $\mathbf{2 5 6}$ MB

Fence

SEASON 7 - SECOND ROUND

Example test

Input (fence.in)	Output (fence.out)
4	6
-12	
$-1-1$	
$1-1$	6
$0-3$	
4	
-12	
12	
0	1
$0-1$	
5	
-12	
12	
$-1-2$	
$1-2$	
40	

Clarifications

The solutions of the sample tests are as follows (the poles are marked with red dots and Lora's house with a blue square):

Sample case 1 (area=3):

Sample case 2 (area=3):

Sample case 3 (area=8):

