Primes

SEASON 7 - ROUND FOUR

As you know a prime number is a positive integer that has exactly two distinct positive integer divisors.

Consider positive integers a, a+1, ..., b ($a \le b$). You want to find the minimum integer l ($1 \le l \le b - a + 1$) such that for any integer x

 $(a \le x \le b - l + 1)$ among l integers x, x + 1, ..., x + l - 1 there are at least k prime numbers.

Find and print the required minimum I. If no value I meets the described limitations, print -1.

Input

The first row of the file primes.in contains of 3 integers – a,b and k.

Output

In the output file primes.out print a single integer - the required minimum *I*. If there's no solution, print -1.

Constraints

$$1 \le a,b,k \le 1 000 000$$

 $a \le b$

Time limit: 1.0 sec Memory limit: 256 MB

Example test

Input (primes.in)	Output (prime_test)out)
2 4 2	3
6 13 1	4
1 4 3	-1