Fruits

SEASON 7 - ROUND FOUR

Lora finally decided to quit her job and do something more interesting – selling fruits.

Currently she has **N** fruits numbered from 1 to N, which she wants to sell. Unfortunately, her new workplace is so narrow that she can only put up one fruit for sale at a time. To make her life simpler, she just puts the fruits in order – **i.e. fruit number i must be sold not later than fruit number i+1.**

The price of fruit number \mathbf{i} at day 0 is A_i . Every day each fruit ripens and hence the price of fruit number \mathbf{i} increases by B_i each day. However, if fruit number \mathbf{i} is not sold by day K_i , it rots and has to be thrown away (i.e. sold for price of 0). Formally stated, the price of fruit number \mathbf{i} at day \mathbf{d} is:

 $A_i + d^*B_i$ if $d < K_i$ 0 if $d \ge K_i$

Lora can sell as many fruits as she wants in a single day, as long as she keeps the order, or she could decide to not sell any fruits in a single day. She is now wondering what the maximum profit she can get is.

Note: The days are counted starting from 0. If a certain fruit rots at day 0, then it can never be sold for a price different than 0.

Input

The first line of the input file fruits.in contains a single integer N – the amount of fruits.

The second line contains N space-separated integers – the prices of each fruit at day 0 (i.e. the array A).

The third line contains N space-separated integers – the price increases of each fruit for a day (i.e. the array B)

The last line contains N space-separated integers – the days at which each fruit rots (i.e. array K).

Output

On a single line of the output file fruits.out print a single number – the maximum profit Lora can achieve, considering the given constraints.

Constraints

```
1 \le N \le 5 000

0 \le K_i \le 10 000

0 \le A_i, B_i \le 1 000 000 000
```

Fruits

SEASON 7 - ROUND FOUR

Time limit: 0.6 sec Memory limit: 256 MB

Sample test

Input (fruits.in)	Output (fruits.out)
3	14
1 2 3	
6 4 2	
2 1 3	

Clarifications

The optimal solution is to sell the first fruit at day 1 for 1+1*6=7. Thus the second fruit rots, since it cannot be sold earlier than the first. We then sell the third fruit at day 2 for 3+2*2=7. The total profit is 7+7=14.