Sequence SEASON 7 - ROUND SIX

Ivancho had a strictly increasing sequence of positive integers a_1, a_2, \ldots, a_n . He used that sequence to build a new one s_1, s_2, \ldots, s_n , where s_i is the sum of the digits of a_i . Unfortunately, Ivancho lost the original sequence and is now trying to recover it using the sequence s_1, s_2, \ldots, s_n . After many tries, he found out that the original sequence could not be unambiguously determined. However, he wants to find such a sequence, but also, he desires the last integer in the sequence a_n to be minimal.

Help him find the desired sequence. It is guaranteed that such a sequence always exists.

Input

The first line of the input file sequence.in contains of one integer N – the number of integers in the sequence.

Then N lines follow containing $s_1, s_2, ..., s_n$ - the elements of the new sequence.

Output

In the output file sequence.out print N integers, one per line – the elements of the desired sequence, meeting the above conditions.

The sequence should be strictly increasing. The sum of digits of the *i*-th number should be equal to s_i .

If there are multiple sequences with least possible number an, print any of them.

Constraints

 $1 \leq N \leq 100$ $1 \leq s_i \leq 100$

Time limit: 1.0 sec Memory limit: 256 MB

Input (sequence.in)	Output (sequence.out)
4	1
1	2
2	3
3	10
1	

Sample tests

SEASON 7 – ROUND SIX

-	
3	19
10	25
7	100
1	