Chess

SEASON 8 - SECOND ROUND

Klimi recently started learning to play chess. Her favourite piece is the knight - she finds the way it moves really interesting. She wondered which cells can be reached by the knight.

More precisely, if she has an N by N board and some cells are already taken (meaning the knight can't step on them) and the knight is located on coordinates X_{1}, Y_{1}, she wants to find out whether it can reach cell X_{2}, Y_{2} in exactly K moves. The target cell (X_{2}, Y_{2}) will always be different from the starting cell $\left(X_{1}, Y_{1}\right)$ and both will always be free. X is the number of the row (top to bottom) and Y is the number of the column (left to right).

Help Klimi by writing a program which answers this question.

Input

From the first line of the file chess. in six numbers are inputted $-N, K, X_{1}, Y_{1}, X_{2}$ and Y_{2}. From each the following N lines N numbers describing a row of the board are inputted - the free cells are notated with 0 and the taken ones with 1 .

Output

In the output file chess .out print a single word - Yes, if the knight can reach the target cell in exactly K moves, and otherwise - No.

Constraints

$3 \leq N \leq 1000$
$1 \leq K \leq 10^{9}$
$1 \leq X_{1}, X_{2}, Y_{1}, Y_{2} \leq N$

Time limit: 2 sec
Memory limit: $\mathbf{2 5 6}$ MB

Sample tests

Input	(chess.in)	Output (chess.out)	Input	(chess.in)	Output (chess.out)			
5	3	1	1	4	3	Yes		
0	0	0	0	0	3	1	1	4
0	0	1	0	0	3	No		
0	0	0	0	0		0	0	0
0	0							
0	0	0	0	0		0	1	1
0	0							
0	0	0	0	0		0	0	0
0	0	0	0	0				
1	0	0	0	0				

