Subset Selection

Given N sequences, each containing M integers, each of which is between 0 and $B-1$ inclusively. We define the sum of a number of sequences as a sequence with the same length, in which each element is equal to the sum of the elements on that specific position, modulo \mathbf{B}.

For example, the sum of the sequences $\{1,4,2\},\{2,2,2\}$ и $\{3,1,3\}$ with $B=5$ is the sequence $\{((1+2+3) \bmod 5)=1,((4+2+1) \bmod 5)=2,((2+2+3) \bmod 5)=2\}$.

The value of a sequence $\left\{A_{1}, A_{2}, \ldots, A_{M}\right\}$ is defined as $\sum_{i=1}^{M} A_{i}^{2}$.
Write a program subsetselection, which chooses a non-empty subset of the N given sequences, such that the value of the sum of the sequences in the chosen subset is as large as possible.

Input

The first line of the input file subsetselection.in contains three positive integers $-N, M$ and B. Each of the next N lines contains M integers, each of which is between 0 and $B-1$, describing the respective sequence.

Output

On the first line of the output file subsetselection. out print one positive integer K - the number of the chosen sequences. On each of the following K lines print a single positive integer - the input index of the current sequence. Sequences are numbered from 1 to N. You can print them in whatever order you wish, but there should not be repeating indices or indices not in the interval between 1 and N.

Scoring

If the output does not fulfill the restrictions above, you will receive 0 points for the test.

Otherwise, you will receive score $\times\left(\frac{\text { yours }+1}{\text { best }+1}\right)^{2}$ points, where score is the number of points the test is worth, yours is the value of the sum-sequence, obtained by you, and best is the maximum value of a sum-sequence among all participants for the given test.

Subset Selection

CE3OH 8 - FIFTH ROUND

Embrace The Challenge

Constraints

Portion of tests	Constraints
15%	$N=20, M=20, B \in[2 ; 20]$
$\mathbf{3 5 \%}$	$N=\mathbf{2 0 0}, M=\mathbf{2 0 0}, B \in[2 ; 100]$
50%	$N=\mathbf{1 0 0 0}, M=\mathbf{1 0 0 0}, B \in[2 ; \mathbf{1 0 0}]$

Time limit: 5 s
Memory limit: $\mathbf{2 5 6}$ MB

Sample test

Input (subsetselection.in)	Output (subsetselection.out)				
5	3	3			
1	0	0			
0	0	0			
1	2	3			
1	2	2			
2	3	1	$	$	
:---					

The proposed output will give a result of 12 .

