Combine

Viktor loves jellies.

Today he bought \mathbf{N} jellies and put them on a table in such a way that jelly number \mathbf{i} has size equal to $\mathbf{a}[\mathrm{i}]$ and it is adjacent to jellies with numbers $\mathbf{i}+1$ and $\mathrm{i} \mathbf{- 1}$ (if they exist).

We can preform the following operation multiple times:
Choose two adjacent jellies of equal sizes and combine them into one with size equal to the sum of the two previous sizes. The new jelly will be adjacent two the neighbours of the jellies the operation was applied to, i.e. if the operation was applied to jellies \mathbf{p} and $\mathbf{p + 1}$, the new jelly will be adjacent to jellies at positions p-1 и p+2 (if they exist).

After preforming this operation multiple times, we will end up with a configuration of jellies. A beuty of a configuration is the minimal size of a jelly in it. Help Viktor by writing a program that computes the maximal possible beauty of a configuration of jellies that he can get.

Input

The first line of the file combine. in contains \mathbf{N} - the initial number of jellies that Viktor bought. The second line contains the initial sizes of the jellies - $\mathbf{a}[1], \mathrm{a}[2], \ldots, \mathrm{a}[\mathrm{N}]$.

Output

The output file combine. out must contain one line with the maximal possible beauty of a configuration of jellies.

Constraints:

$1 \leq N \leq 1000$
$1 \leq a[i] \leq 10^{9}$

Time limit: 1 sec
Memory limit: $\mathbf{2 5 6}$ MB

Example test:

Input (combine.in)	Output (combine.out)
4	1
1	1

