Points

SEASON 8 - SIXTH ROUND

You are given a set of ${\bf N}$ points in a 2D plane. No three points are collinear and all coordinates are integers.

Let's consider all quadrilateral with vertices some of these **N** points. We will consider **both convex and concave** quadrilaterals. Find the largest area of one of these figures.

Write a program **points**, that calculates the **largest possible area** of a quadrilateral with vertices and prints this value **multiplied by 2**.

Input

The first line of the input file points.in contains the integer N – the number of points. The next N lines contain the coordinates of the points – x[1], y[1], x[2], y[2], ..., x[N], y[N].

Output

The output file points out must contain the largest possible area **multiplied by 2**. It is guaranteed that this number will also be an integer.

Constraints

 $4 \le N \le 2000$

 $-10^9 \le x[i], y[i] \le 10^9$

Time limit: 2 sec

Memory limit: 256 MB

Example test

Input (points.in)	Output (points.out)
5	24
2 7	
9 9	
1 6	
4 6	
2 4	