

SEASON 8 - FINAL

Let's consider a table consisting of *N* rows and *M* columns. The rows and columns are numbered starting from 1. There is a number written in every cell of the table and we will call those numbers the **values** of the cells. Some of the cells are **blocked** and so the number **-1** is written in them. The values of all other cells are positive integers. Two cells are considered **adjacent** if they have a common border, i.e. cell (x,y) is adjacent to (x + 1, y), (x - 1, y), (x, y - 1) and (x, y + 1), when the corresponding cells exist.

Path in the table is defined as a non-empty sequence of *different non-blocked cells*, such that they are consecutively adjacent. Unfortunately, we are afraid of long paths, so the length of every path shouldn't exceed *MAXL*.

A **subsequence** of a path is a sequence that can be derived from the given path by deleting zero or more elements without changing the order of the remaining elements. **The longest increasing subsequence** of a path is the longest sequence $\{A_1, A_2, ..., A_M\}$, such that for every 1 < i < M we have $A_{i-1} < A_i < A_{i+1}$. Similarly, **the longest decreasing subsequence** is the sequence $\{A_1, A_2, ..., A_M\}$, such that for every 1 < i < M we have $A_{i-1} > A_i > A_{i+1}$. We will denote the lengths of these two sequences for a path **P** as LIS(P) and LDS(P).

The value of a path P is defined as LIS(P).LDS(P).

Write a program **path**, that finds a path *P* such that its value is as large as possible.

Input:

The first line of the input file path.in will contain the integers N and M. Each of the next N lines will contain M numbers – the values of the cells стойностите от поредния ред на таблицата, започвайки от реда с номер 1. На последния ред на входния файл ще бъде зададено цялото число MAXL.

Output:

On the first line of the output file path.out the program should print the length K of the path found by you. On each of the following K lines print the coordinates - number of row and number of column - of the corresponding cell in the path.

Scoring:

If the output does not fulfill the restrictions above, you will receive 0 points for the test. Otherwise, you will receive $score \times \left(\frac{yours}{best}\right)^2$ points, where *score* is the number of points the test is worth, *yours* is the value of the path, obtained by you, and *best* is the maximum value of a path among all participants for the given test.

SEASON 8 - FINAL

Constraints:

The values of the non-blocked cells are integers in the interval $[1; 10^9]$

Portion of tests	Constraints on N, M and MAXL
10%	$N \square 20, M \square 20, MAXL \in [1; 100]$
40%	$N \square 100, M \square 100, MAXL \in [1; 40000]$
50%	$N \square 1000, M \square 1000, MAXL \in [1; 300000]$

Time limit: 5 sec Memory limit: 256 MB

Example test

Input (path.in)	Output (path.out)
3 3	4
1 3 -1	1 1
-1 2 1	1 2
-1 1 1	2 2
4	2 3

Note:

The found path **P** contains the values $\{1, 3, 2, 1\}$ in this order. This means that $LIS(\mathbf{P}) = 2$, $LDS(\mathbf{P}) = 3$ and its cost is equal to 6.