SEASON 9 - SECOND ROUND

Name is making a series of square paintings, that could be represented by a colored grid. The cells' rows and columns are numbered, with the top left corner being $(0,0)$. Name starts with a particular painting. Each consequent painting is made out of 4 rotated copies of the previous one in the following arrangement:

Each of the copies is rotated by 90 degrees clockwise up to 3 times. Because the last painting would be very large, Name has asked some helpers to start drawing it early. Your task is to write a program, which determines what color a given cell in the last painting should be.

Input

From the first line of the input file painting.in N and M are entered - the size of the first painting and the number of subsequent ones.
On the next N lines N numbers are entered - the colors of the first painting.
On the next line 4 numbers R_{i} are entered - how many times P_{i} (from the diagram in the statement) is rotated.
On the last line X and Y are entered - the number of the column and row of the cell from the last painting you are looking for.

Output

In the output file painting. out print one number - the color of the cell with coordinates (X, Y) from the last painting.

Constraints

$2 \leq N \leq 20,1 \leq M \leq 50$
$0 \leq$ the colors of the first painting ≤ 100
$0 \leq R_{i} \leq 3,0 \leq X, Y<N * 2^{M}$

Time limit: 0.2 seconds
Memory limit: $\mathbf{2 5 6}$ MB

SEASON 9 - SECOND ROUND

Example

Input (painting.in)	$\begin{aligned} & \text { Output } \\ & \text { (painting.out) } \end{aligned}$	Explanation
$\begin{array}{lll} 2 & 2 & \\ 1 & 2 & \\ 3 & 4 & \\ 2 & 1 & 3 \end{array} 0$	3	Name needs to make 2 new paintings. The first one should look like this: $\left\lvert\, \begin{array}{llll} 4 & 3 & 3 & 1 \\ 2 & 1 & 4 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 3 & 3 & 4 \end{array}\right.$ And the second one like this: $\left(\begin{array}{llllllll} 4 & 3 & 3 & 1 & 1 & 2 & 2 & 4 \\ 2 & 1 & 4 & 2 & 3 & 4 & 1 & 3 \\ 2 & 4 & 1 & 2 & 3 & 1 & 4 & 3 \\ 1 & 3 & 3 & 4 & 4 & 2 & 2 & 1 \\ 1 & 2 & 2 & 4 & 4 & 3 & 3 & 1 \\ 3 & 4 & 1 & 3 & 2 & 1 & 4 & 2 \\ 3 & 1 & 4 & 3 & 2 & 4 & 1 & 2 \\ 4 & 2 & 2 & 1 & 1 & 3 & 3 & 4 \end{array}\right.$ The cell with coordinates $(5,4)$ from the last painting has color 3

