SEASON 9 - SECOND ROUND

The physics faculty needs a simulation with the following parameters:
There is a discrete two dimensional space (grid with cells) with C columns and R rows. Initially, in every cell a single particle is placed, as well as a one of eight possible vectors (described later). The time is discrete too, separated in simulation steps. Every step, every particle on the grid goes to one of the eight neighbour cells (or falls out of the grid and disappears), depending on the vector in that cell. For example, if a particle is in cell ($3 ; 3$) and there is a vector of type $1(1 ;-1)$, in the next simulation step the particle will be in cell $(4 ; 2)$. Write a program that will compute how many particles there are in every cell of the grid after S simulation steps.

\boldsymbol{R}	7		0	7	1
\leftarrow	6			\geqslant	2
1	5	\downarrow	4		3

Each of the eight possible vectors has a digit (type) associated with it. The direction of the arrow shows in which neighbour cell a particle following that vector will go.

For exmaple, a vector of type 3 would make a particle go from ($\mathrm{c} ; \mathrm{r}$) to ($\mathrm{c}+1 ; \mathrm{r}+1$).

Input

From the first line of the file flowfield.in three integers are entered $-C, R$ and S
On each of the next R lines there are C digits (0 to 7) - the vectors in every cell of the grid.

Output

In the file flowfield. out output the number of particles in every cell of the grid after S simulations. There are spaces between the digits.

Constraints

$2 \leq R, C \leq 100$
$1 \leq S \leq 10^{17}$

Time limit: 0.3 seconds
 Memory limit: $\mathbf{2 5 6}$ MB

Example

FlowField

SEASON 9 - SECOND ROUND

Input (flowfield.in)	Output (flowfield.out)		
3	3	2	1
2	4	6	2
0	4	0	1
0	6	4	0
1	1	0	

On the following illustration you can see the state of the grid after zero (initially), one and two simulation steps. Particles are named for clarity only.

