SEASON 9 - FIFTH ROUND

You will be given a three channel image (3 colors per pixel: red, green and blue with values between 0 and 255) that you have to compress and then reconstruct as accurately as possible. However, there are two catches:

1. The compression is only in terms of the colors. In the compressed form each pixel must have one of 16 colors chosen by you
2. Before you have a chance to reconstruct the image, your compression will be altered. A rectangular section of it will be cut and given to you. Some of the pixels in this area will swap their color with one of their neighbours.

Your solution will be executed twice:

1. On the first run you will get the original image in imrec. in and will have to compress it and put it in imrec.out
2. On the second run you will get the altered compressed image in imrec.in and will have to try and reconstruct the original image only in the rectangular area corresponding to the cut made on your compression.

See the input/output section for more details.

SEASON 9 - FIFTH ROUND

Scoring

The score of your solution will be the difference of the reconstructed image and its corresponding area in the original image. The difference between two images is defined as the sum of the differences of every two corresponding pixels. The difference of two pixels is defined by the formula:

$$
\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}+\left(\mathrm{g}_{1}-\mathrm{g}_{2}\right)^{2}+\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right)^{2}
$$

where r_{1} and r_{2} are the red values of the two pixels, g_{1} and g_{2} are the green values and b_{1} and b_{2} for the blue values.
You will receive (minScore +1$) \div($ yourScore +1$) * 100 \%$ percent of the max points for the current test. yourScore is (unsurprisingly) your score and minScore is the lowest score that any solution got for that test.

Input / Output

For input use the file imrec.in, for output - imrec.out. You are not allowed to read or write any other files.

The first number on the input will always be a flag, signaling whether this is the first or second run - the number 0 or 1 .

On the first run:

On the input file, \mathbf{W} and \mathbf{H} follow - the width and height of the original image.
On the next \mathbf{H} lines there are \mathbf{W} triplets of numbers with values between 0 and 255 - the colors (red, green, blue) of the pixels of the image.

On the output print 16 triplets of numbers (each number from 0 to 255) - the color palette you choose to use for the compression. On the next \mathbf{H} lines print \mathbf{W} numbers - the indices of the color palette for each pixel (from 0 to 15).

On the second run:

On the input file, the color palette you chose in the last run follows - 16 triplets of numbers. After that there are \mathbf{W}_{1} and \mathbf{H}_{1} - the width and height of the altered compressed image. On the next $\mathbf{H}_{\mathbf{1}}$ lines there are \mathbf{W}_{1} indices of the color used for each pixel (each from 0 to 15).

On the output, print the reconstructed color (3 numbers) for each pixel ($\mathbf{H}_{1}{ }^{*} \mathbf{W}_{1}$ pixels).

SEASON 9 - FIFTH ROUND

Constraints

Original images are up to 500×500 in size.
After alternation at least 50% of the pixels in each dimension will be left for reconstruction.
20% of the pixels will be swapped with their neighbour, but only once.
Pixels are neighbours when they share a side.

Time limit: 5 seconds for each run
Memory limit: $\mathbf{2 5 6}$ MB for each run

Example

There are more examples in the visualizer.

First run	
Input(imrec.in)	Output (imrec.out)
$\begin{array}{\|lllllllllllll} \hline 0 & & & & & & & & & & \\ 3 & 2 & & & & & & & & & \\ 0 & 0 & 0 & 255 & 255 & 255 & 128 & 128 & 128 \\ 255 & 0 & 0 & 0 & 255 & 0 & 0 & 0 & 255 & & \\ \hline \end{array}$	$\begin{array}{llll} \hline 228 & 213 & 217 \\ 54 & 16 & 37 \\ 170 & 188 & 216 \\ 248 & 233 & 22 \\ 195 & 143 & 98 \\ 53 & 12 & 3 & \\ 88 & 155 & 61 \\ 136 & 192 & 191 \\ 255 & 242 & 173 \\ 179 & 49 & 121 \\ 12 & 4 & 55 & \\ 185 & 145 & 226 \\ 149 & 253 & 241 \\ 128 & 188 & 188 \\ 82 & 190 & 35 & \\ 100 & 255 & 6 \\ 5 & 0 & 4 & \\ 9 & 15 & 10 & \end{array}$
Second run	
Input (imrec.in)	Output (imrec.out)
$\begin{array}{\|llll\|} \hline 1 & & \\ 228 & 213 & 217 \\ 54 & 16 & 37 \\ \hline \end{array}$	17949121

SEASON 9 - FIFTH ROUND

```
170 188 216
248 233 22
195 143 98
53 12 3
88 155 61
136 192 191
255 242 173
179 49 121
12455
185 145 226
149 253 241
128 188 188
82 190 35
100 255 6
1 1
```

9

After the alternation of the compressed image a single pixel is left, with color 9 from the palette (179 49 121). It differs with 22818 from the corresponding pixel (the red one, in the lower left corner). Be aware, this example is very small and simple, your solution wouldn't be tested on such.

