
Partsort
SEASON 10 – SECOND ROUND

Given is a numeric sequence, which is a permutation of the numbers from 1 to 𝑵𝑵. We say
that the sequence is sorted if for each 𝑖𝑖 = 1, 2, … ,𝑁𝑁 – 1 the inequality 𝐴𝐴𝑖𝑖 < 𝐴𝐴𝑖𝑖+1 is satisfied,
where 𝐴𝐴𝑖𝑖 denotes the 𝑖𝑖-th number in the sequence. In the not-so-distant past the computers had
way less operational memory and namely because of this to sort a sequence was not a trivial
task.

We know that we can load in the memory at most 𝑲𝑲 of the elements of the sequence at a
time. That is why, we first sort the numbers with indices between 1 and 𝐾𝐾, then those between 2
and 𝐾𝐾 + 1 and so on until we sort the elements from index 𝑁𝑁 − 𝐾𝐾 + 1 to index 𝑁𝑁. Unfortunately,
this is not always sufficient to sort the sequence. For instance, if 𝑁𝑁 = 5, 𝐾𝐾 = 3 and
𝐴𝐴 = {4, 5, 3, 1, 2}, we ger the following changes: {𝟑𝟑,𝟒𝟒,𝟓𝟓, 1, 2} → {3,𝟏𝟏,𝟒𝟒,𝟓𝟓, 2} → {3, 1,𝟐𝟐,𝟒𝟒,𝟓𝟓}. So,
after one such step, we will change the original sequence to {3, 1, 2, 4, 5} and it will take us one
more step to sort the sequence completely.

Write a program, which finds the number of steps that the algorithm will do, in order to sort
the given sequence. The program has to process 𝑻𝑻 test cases during a single execution.

Input
The first line of the input file partsort.in contains a single number 𝑇𝑇. Each of the

following 𝑇𝑇 lines describes one test case in the format – 𝑁𝑁,𝐾𝐾,𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁.

Output
On 𝑁𝑁 lines of the output file partsort.out print one number equal to the required

number of steps needed to sort the sequence from the corresponding test case.

Constraints
2 ≤ 𝐾𝐾 ≤ 𝑁𝑁 ≤ 10 000
The sum of 𝑁𝑁 ÷ 𝐾𝐾 over all test cases will not exceed 100.

Example

Input Output
3
5 3 4 5 3 1 2
3 2 1 2 3
7 7 7 6 5 4 3 2 1

2
0
1

