
Constructor
SEASON 10 – SECOND ROUND

Annie and Bobby play with their new constructor, which consists of colored cubes. The
colors of the cubes are 𝑴𝑴 in total and they are labeled with small Latin letters. It is known that
there are 𝐶𝐶𝑖𝑖 cubes colored in 𝐿𝐿𝑖𝑖. The children take turns to add cubes into a sequence. In the
beginning, they choose a color and put all the cubes of this color into the sequence. After that
they choose another color and add some of the cubes at the front of the sequence and the
remaining ones at the end. They do this until they run out of cubes. It is possible to put all the
cubes of a certain color only at the front or only at the end.

Write a program which determines whether by doing this Annie and Bobby can construct
𝑵𝑵 given sequences of cubes, represented as strings.

Input
The first line of the input file constructor.in contains the numbers 𝑁𝑁 and 𝑀𝑀. The

following 𝑀𝑀 lines contain a symbol 𝐿𝐿𝑖𝑖 and a number 𝐶𝐶𝑖𝑖, separated by a space. Each of the last 𝑁𝑁
lines contains a string which describes a sequence that you have to check.

Output
On 𝑁𝑁 lines of the output file constructor.out print "Yes" или "No" depending on

whether the corresponding sequence of cubes could be obtained or not.

Constraints
1 ≤ 𝑁𝑁 ≤ 100
1 ≤ 𝑀𝑀 ≤ 26
The total length of the strings will not exceed 100.
The sum of all 𝐶𝐶𝑖𝑖 will not exceed 100.

Example

Input Output
5 5
a 2
b 3
c 1
x 2
y 4
aabbbcxxyyyy
ycbaabbxxyyy
ababbxxyyycy
xxbacabbyyy
yaabbbcxyyyx

Yes
Yes
No
No
No

Partsort
SEASON 10 – SECOND ROUND

Given is a numeric sequence, which is a permutation of the numbers from 1 to 𝑵𝑵. We say
that the sequence is sorted if for each 𝑖𝑖 = 1, 2, … ,𝑁𝑁 – 1 the inequality 𝐴𝐴𝑖𝑖 < 𝐴𝐴𝑖𝑖+1 is satisfied,
where 𝐴𝐴𝑖𝑖 denotes the 𝑖𝑖-th number in the sequence. In the not-so-distant past the computers had
way less operational memory and namely because of this to sort a sequence was not a trivial
task.

We know that we can load in the memory at most 𝑲𝑲 of the elements of the sequence at a
time. That is why, we first sort the numbers with indices between 1 and 𝐾𝐾, then those between 2
and 𝐾𝐾 + 1 and so on until we sort the elements from index 𝑁𝑁 − 𝐾𝐾 + 1 to index 𝑁𝑁. Unfortunately,
this is not always sufficient to sort the sequence. For instance, if 𝑁𝑁 = 5, 𝐾𝐾 = 3 and
𝐴𝐴 = {4, 5, 3, 1, 2}, we ger the following changes: {𝟑𝟑,𝟒𝟒,𝟓𝟓, 1, 2} → {3,𝟏𝟏,𝟒𝟒,𝟓𝟓, 2} → {3, 1,𝟐𝟐,𝟒𝟒,𝟓𝟓}. So,
after one such step, we will change the original sequence to {3, 1, 2, 4, 5} and it will take us one
more step to sort the sequence completely.

Write a program, which finds the number of steps that the algorithm will do, in order to sort
the given sequence. The program has to process 𝑻𝑻 test cases during a single execution.

Input
The first line of the input file partsort.in contains a single number 𝑇𝑇. Each of the

following 𝑇𝑇 lines describes one test case in the format – 𝑁𝑁,𝐾𝐾,𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁.

Output
On 𝑁𝑁 lines of the output file partsort.out print one number equal to the required

number of steps needed to sort the sequence from the corresponding test case.

Constraints
2 ≤ 𝐾𝐾 ≤ 𝑁𝑁 ≤ 10 000
The sum of 𝑁𝑁 ÷ 𝐾𝐾 over all test cases will not exceed 100.

Example

Input Output
3
5 3 4 5 3 1 2
3 2 1 2 3
7 7 7 6 5 4 3 2 1

2
0
1

Bit inversion
SEASON 10 – SECOND ROUND

You are given N binary numbers, each with M bits (the numbers can have leading zeros).

You have a special device, which can perform the following operation: for a given index of a
number and a position of a bit, the device inverts all bits of the number with the given index
(each 0 becomes a 1 and each 1 becomes a 0) and also it inverts the bit on the given position in
all other numbers. Your goal is to use the special device in such a way that all N numbers
become equal to zero.

Input (bitinversion.in)
On the first line of the input are given the numbers N and M. On each of the next N lines, a

binary number with M bits is given.

Output (bitinversion.out)
If it’s impossible to make all numbers equal to zero using the described operation, output the

number -1 on a single line. Otherwise, on the first line of the output print the number K (0 ≤ K ≤ 1
000 000) - the number of operations you are going to perform. On each of the following K lines
print two numbers xi and yi (0 ≤ xi < N, 0 ≤ yi < M, the most significant bit of each number has
position M-1 and the least significant has position 0) - the index of a number and the position of a
bit you’ll give the device for the i-th operation. It can be proved that if it’s possible to make all
numbers equal to zero, you can do it with no more than 1 000 000 operations. If there are
several ways to do it, output any of them.

Constraints
1 ≤ N*M ≤ 1 000 000

Example

Input Output
2 3
010
100

3
0 1
0 0
1 1

Explanation

The numbers change the following way:
(010, 100) → (101, 110) → (010, 111) → (000, 000)

	Constructor_EN
	Partsort_EN
	Bitinversion_EN

