Runners

2022/2023 SEASON - FIRST ROUND

Computers often break during an Informatics competition. Therefore, there are k people in the competition hall who are responsible for the technical support. For the purpose of the task, we will call them *runners*.

The hall can be represented as the 2D space, where at the beginning of the competition we can choose where to place each *runner* as a pair of (x, y). Every *runner* also has their own speed *s*.

During the competition, exactly *n* computers will break, each characterized by a pair (x^2, y^2) . 1 *runner* must be selected to go from their position (x^1, y^1) to (x^2, y^2) in time $s * \sqrt{(x^1 - x^2)^2 + (y^1 - y^2)^2}$ and fix the computer, which happens in a negligible amount of time.

Their new position will now be (x^2, y^2) .

Computers break in such a way that all *runners* are free at the time of computer break, i.e. the i + 1-th computer will break only after the *i*-th computer is fixed.

We want to minimize the total amount of time a contestant sits with a broken computer, waiting for the respective *runner* to come and fix it.

Input

The first line of the **runners.in** file contains the numbers n and k. The next k lines contain one number each -s - the speed of the *runner*.

Each of the next n lines contains two numbers (x, y) for the position of the respective broken computer.

Output

On k lines in the file **runners.out**, print 1 pair of numbers (p, q) - the positions of the *runners* at the start of the competition. They must satisfy the constraints $1 \le p, q \le 10^9$.

On the next n lines, print 1 number each - the index of the *runner* that will repair the corresponding computer.

Scoring

For each test, let *minScore* be the smallest score among all participants' scores and *yourScore* be your score. You will be awarded $1 - \sqrt{1 - \frac{minScore + 1}{yourScore + 1}}$ multiplied by the amount of points for the test.

Constraints

 $n = 100\ 000$

 $1.0 \le s \le 10.0$, *s* has at most 6 decimal digits.

2022/2023 SEASON - FIRST ROUND

 $1 \le x, y \le 10^9$

Time limit: 5 sec.

Memory limit: 256 MB.

The tests are distributed as follows:

Percentage	k
15%	$1 \le k \le 10$
20%	$10 \le k \le 100$
30%	$100 \le k \le 1\ 000$
20%	$1\ 000 \le k \le 10\ 000$
15%	$10\ 000 \le k \le 100\ 000$

Sample test

Input (runners.in)	Output (runners.out)
52	38
1.300000	67
1.800000	1
38	2
67	2
94	2
10 2	1
15	
	1

Example explanation

The sample test is only for an explanation, in all real tests $n = 100\ 000$.

Runner 1 travels for 0 time to position (3, 8).

Runner 2 travels for 0 time to position (6, 7).

Runners

2022/2023 SEASON - FIRST ROUND

Runner 2 travels for $1.8 * \sqrt{18}$ time to position (9, 4).

Runner 2 travels for $1.8 * \sqrt{5}$ time to position (10, 2).

Runner 1 travels for $1.3 * \sqrt{13}$ time to position (1, 5).

The total time in which a competitor is waiting with a broken computer is $1.8 * \sqrt{18} + 1.8 * \sqrt{5} + 1.3 * \sqrt{13} \approx 16.348892254$.

Tests generation

The numbers k, s, x, y are randomly generated in the respective intervals that bound them (each number in the interval has an equal chance).