Runners

Computers often break during an Informatics competition. Therefore, there are k people in the competition hall who are responsible for the technical support. For the purpose of the task, we will call them runners.

The hall can be represented as the 2D space, where at the beginning of the competition we can choose where to place each runner as a pair of (x, y). Every runner also has their own speed s.

During the competition, exactly n computers will break, each characterized by a pair $(x 2, y 2) .1$ runner must be selected to go from their position $(x 1, y 1)$ to $(x 2, y 2)$ in time $s * \sqrt{(x 1-x 2)^{2}+(y 1-y 2)^{2}}$ and fix the computer, which happens in a negligible amount of time.

Their new position will now be $(x 2, y 2)$.
Computers break in such a way that all runners are free at the time of computer break, i.e. the $i+1$-th computer will break only after the i-th computer is fixed.

We want to minimize the total amount of time a contestant sits with a broken computer, waiting for the respective runner to come and fix it.

Input

The first line of the runners.in file contains the numbers n and k. The next k lines contain one number each - s - the speed of the runner.

Each of the next n lines contains two numbers (x, y) for the position of the respective broken computer.

Output

On k lines in the file runners.out, print 1 pair of numbers (p, q) - the positions of the runners at the start of the competition. They must satisfy the constraints $1 \leq p, q \leq 10^{9}$.

On the next n lines, print 1 number each - the index of the runner that will repair the corresponding computer.

Scoring

For each test, let minScore be the smallest score among all participants' scores and yourScore be your score. You will be awarded $1-\sqrt{1-\frac{\text { minScore }+1}{\text { yourScore }+1}}$ multiplied by the amount of points for the test.

Constraints

$n=100000$
$1.0 \leq s \leq 10.0, s$ has at most 6 decimal digits.

Runners

2022/2023 SEASON - FIRST ROUND
$1 \leq x, y \leq 10^{9}$
Time limit: 5 sec.
Memory limit: $\mathbf{2 5 6}$ MB.
The tests are distributed as follows:

Percentage	k
15%	$1 \leq k \leq 10$
20%	$10 \leq k \leq 100$
30%	$100 \leq k \leq 1000$
20%	$1000 \leq k \leq 10000$
15%	$10000 \leq k \leq 100000$

Sample test

Input (runners.in)	Output (runners.out)
52	38
1.300000	67
1.800000	1
38	2
67	2
94	2
102	1
15	

Example explanation

The sample test is only for an explanation, in all real tests $n=100000$.
Runner 1 travels for 0 time to position $(3,8)$
Runner 2 travels for 0 time to position $(6,7)$.

Runners

2022/2023 SEASON - FIRST ROUND

Runner 2 travels for $1.8 * \sqrt{18}$ time to position $(9,4)$.
Runner 2 travels for $1.8 * \sqrt{5}$ time to position (10, 2).
Runner 1 travels for $1.3 * \sqrt{13}$ time to position $(1,5)$.
The total time in which a competitor is waiting with a broken computer is $1.8 * \sqrt{18}+1.8 * \sqrt{5}+1.3 *$ $\sqrt{13} \approx 16.348892254$.

Tests generation

The numbers k, s, x, y are randomly generated in the respective intervals that bound them (each number in the interval has an equal chance).

