Tourism

2022/2023 SEASON - FOURTH ROUND

California, Rome, Dubai, Paris, Amsterdam, London, Rousse, Emiliyan is travelling again.
He is in cell S of a given map and wants to reach cell F. The remaining cells of the map are . and \#. Cells S, F and . symbolize land and the \# cells symbolize water. Unfortunately, he cannot swim and can only move on land. For a unit of time, he can move to cells that are directly up, down, left, or right from his current one.

There are also q two-way airline routes. Each is characterized by 5 parameters ($x 1, y 1, x 2, y 2, t$), which means he can move from cell $(x 1, y 1)$ to cell $(x 2, y 2)$ or from cell $(x 2, y 2)$ to cell $(x 1, y 1)$ for t units of time. Cells $(x 1, y 1)$ and $(x 2, y 2)$ are part of the land.

Find the minimum amount of time it takes to get from S to F.

Input

The first line of the file tourism.in contains the numbers n and m. Each of the next n lines contains m symbols that describe the map. It is guaranteed that there is exactly $1 S$ cell and exactly $1 F$ cell.

The next line contains the number q, the number of airline lines, and the next q lines contain 5 numbers each, $(x 1, y 1, x 2, y 2, t)$, characterizing the corresponding airline route.

Output

On the only line of the file tourism.out, print the minimum time it takes to get from S to F . If there is no possible path, print -1 .

Constraints

$1 \leq n, m \leq 200$
$1 \leq q \leq 20000$
$1 \leq t \leq 1000$
$1 \leq x 1, x 2 \leq n$
$1 \leq y 1, y 2 \leq m$

Time limit: 0.4 sec.

Memory limit: $\mathbf{2 5 6}$ MB.
Sample test

Input (tourism.in)	Output (tourism.out)
53	104
S\#.	
\ldots	
\#\#\#	

Tourism

2022/2023 SEASON - FOURTH ROUND

Embrace The Challenge
\square

