Trade

Antoine is a retailer. He has 1 lev (marked with BGN). He has a list of all possible exchanges at the exchange offices in his city (which we assume have an unlimited amount of all the currencies they offer) and is now interested in whether through them he can become infinitely rich in BGN with enough exchanges (or at least until an exchange office bans him).

Formally, you are asked whether there exists a sequence of currencies $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{k} \rightarrow x_{1}, x_{1}=$ $B G N$ such that $\operatorname{cost}\left(x_{1}, x_{2}\right) * \operatorname{cost}\left(x_{2}, x_{3}\right) * \ldots * \operatorname{cost}\left(x_{k-1}, x_{k}\right) * \operatorname{cost}\left(x_{k}, x_{1}\right)>1$

Input

The first line of the file trade.in contains the number n - the number of possible exchanges. The next n contains 3 values each $-y_{1}, y_{2}$, cost. This means that a unit of currency y_{1} can be converted into cost units of currency y_{2}.

Output

Print "YES" or "NO" in the file trade.out. It is guaranteed that you will not receive "wrong answer" due to a precision error.

Constraints

$1 \leq n \leq 10^{4}$
$10^{-9} \leq$ cost $\leq 10^{9}$ has at most 9 decimal digits.
$1 \leq\left|y_{i}\right| \leq 10, y_{i}$ consists of uppercase English letters
Time limit: 2 sec.
Memory limit: $\mathbf{2 5 6}$ MB.

Sample test

Input (trade.in)	Output (trade.out)
3	YES
BGN USD 1.86	
USD EUR 1.05	
EUR BGN 0.52	

