Competition

2022/2023 SEASON - FINAL ROUND

You are participating in a TV competition where your goal is to build a sequence whose last element is a given natural number n. You can reach it sticking to the following rules:

- (1) $x_0 = 1$.
- (2) $x_i = x_j @ x_k$ for each $i \ge 1, 0 \le j, k < i$ and @ is any of the following operations, each of which has a unique code:

Code	Operation
1	$x_i = x_j + x_k$, addition
2	$x_i = x_j - x_k$, subtraction
3	$x_i = x_j * x_k$, multiplication
4	$x_i = x_j/x_k$, integer division
5	$x_i = x_j \% x_k$, remainder of division
6	$x_i = x_j \& x_k$, bitwise "and"
7	$x_i = x_j x_k$, bitwise "or"
8	$x_i = x_j^k x_k$, bitwise exclusive "or"

The constraint $1 \le x_i < 2^{63}$ must be fulfilled during the whole time.

The application of an operation is denoted by (*operation code*) (*j*) (*k*). The goal is to find a sequence of operations for which $x_l = n$ and *l* is as small as possible.

Answer *t* such queries.

Input

The first line of the file **competition.in** contains the number t. Each of the next t lines contains one number - n for the corresponding query.

Output

For each query, print in the file competition.out first the number of operations l ($0 \le l \le 150$), and on the next l lines - the operations themselves. $x_l = n$ must be satisfied. If for some n you cannot find the required operations, print -1.

Constraints

 $2 \le n < 2^{63}$

 $1 \leq t \leq 1000$

It is guaranteed that for every $n < 2^{63}$ there is a solution with at most 150 operations.

Time limit: 5 sec.

Memory limit: 256 MB.

2022/2023 SEASON - FINAL ROUND

Scoring

For each solved query l^2 will be added to your score, and for each $-1:300^2$. For each test, let *minScore* be the smallest score among all participants' scores and *yourScore* be your score. You will be awarded $1 - \sqrt{1 - \frac{minScore+}{yourScore+}}$ multiplied by the amount of points for the test.

The tests are distributed as follows:

n t	< 2 ¹⁵	< 2 ³¹	< 2 ⁶³
= 10 ¹	5%	5%	5%
$= 10^2$	5%	15%	15%
$= 10^3$	5%	15%	30%

Tests generation

The numbers n are randomly generated in the respective intervals that bound them (each number in the interval has an equal chance). It is guaranteed that they are distinct.

Input (competition.in)	Output (competition.out)
2	10
32	100
123456789012345678	1 1 0
	1 2 0
	8 2 3
	3 4 4
	4 5 1
	7 6 5
	5 7 6
	2 5 8
	695
	-1

Sample test

2022/2023 SEASON - FINAL ROUND

Example explanation

For n = 32, $x_0 = 1$ $x_1 = x_0 + x_0 = 1 + 1 = 2$ $x_2 = x_1 + x_0 = 2 + 1 = 3$ $x_3 = x_2 + x_0 = 3 + 1 = 4$ $x_4 = x_2^x_3 = 3^4 = 7$ $x_5 = x_4 * x_4 = 7 * 7 = 49$ $x_6 = x_5/x_1 = 49/2 = 24$ $x_7 = x_6 | x_5 = 24 | 49 = 57$ $x_8 = x_7 \% x_6 = 57\% 24 = 9$ $x_9 = x_5 - x_8 = 49 - 9 = 40$ $x_{10} = x_9 \& x_5 = 40 \& 49 = 32$

No solution was found for n = 123456789012345678 and -1 is printed instead.

The total result is $10^2 + 300^2 = 100 + 90000 = 90100$