
Pattern Compression
SEASON 10 – FINAL

The Bulgarian language and literature exam is over, the students' grades are already
known and Ms. Lalka Dencheva is relieved that she will not write (many) explanations because
of certain individuals who have failed miserably. However, after a detailed analysis of the results,
she found that writing their own argumentative texts was quite a challenge for many of her
students. Until now, she had secretly suspected that it was not possible for the entire class she
taught to create such masterpieces of the interpretive genre as she had read day and night all
year. Now her suspicions were confirmed, and she decided she could no longer allow her students
to deceive her.

Ms. Lalka Dencheva copied one of the essays received during the e-learning, pasted the
text into the Internet search engine and … received error 414. After numerous attempts to solve
this problem, including the purchase of a new laptop, the teacher asked one computer-literate
student in her class who can be trusted. He was happy to explain that the search engine could
not process such long search queries and suggested that his teacher use only part of the essay
as a pattern. However, Ms. Dencheva did not like this option and the student started looking for
another solution.

For the purpose of this problem, we can assume that the text of the essay consists of 𝑁𝑁
lowercase Latin letters. You need to find a suitable pattern to use to search the entire text in the
search engine. Fortunately, the search engine provides several options for abbreviating the
pattern:

1) A valid pattern is any sequence of lowercase Latin letters
 For example: "aab" is a pattern for searching the text "aab"

2) If 𝑃𝑃 is a valid pattern for the text 𝑇𝑇, then 𝑃𝑃? (𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑘𝑘) is a valid pattern for searching

the results of the concatenation of 𝑇𝑇 and each of the letters 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑘𝑘
 For example: "aab?(c,d)" is a pattern for searching of the texts "aabc" and

"aabd"

3) If 𝑃𝑃 is a valid pattern for searching the all the texts in the set 𝑆𝑆, then [𝑃𝑃,𝑘𝑘] is a valid
pattern for searching the results of the concatenation of the (optionally not different) texts
𝑇𝑇1, 𝑇𝑇2, …, 𝑇𝑇𝑘𝑘, each of which belongs to 𝑆𝑆, where 𝑘𝑘 greater than 1
 For example: "[aab?(c,d),2]" is a pattern for searching the texts "aabcaabc",

"aabcaabd" and "aabdaabd"

4) If 𝑃𝑃 is a valid pattern for searching the text 𝑇𝑇, then such is also the pattern obtained from
the concatenation of: '#', '=', 𝑄𝑄, '.' and 𝑃𝑃′, where 𝑄𝑄 is a sequence of lowercase Latin
letters and 𝑃𝑃′ is obtained by replacing (part of) the appearances of 𝑄𝑄 as a substring with
the symbol '#'. This type of abbreviation can be used only in the beginning of the pattern.
 For example: "#=aab.#c#d" is a pattern for searching the text "aabcaabd"

 Of course, there are many different patterns that can be used to search for specific text
through a search engine. It is clear that the pattern should not be too long, but it should also be
relatively accurate so that the text you are looking for can be found.

 Let's define the following two functions:

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑃𝑃) – the number of symbols in 𝑃𝑃
 𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑢𝑢(𝑇𝑇,𝑃𝑃) – for every lowercase Latin letter in the text 𝑇𝑇, which is represented

by a '?' in the pattern 𝑃𝑃, it is added the count of different letters, which this '?' can
replace in the text

 Your task is to find a valid pattern 𝑃𝑃 for a given text 𝑇𝑇, so that the sum of the two functions
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑃𝑃) + 𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑢𝑢(𝑇𝑇,𝑃𝑃) is as small as possible.

Input
The first line of the input file pattern.in contains the string 𝑇𝑇, composed of 𝑁𝑁 lowercase

Latin letters.

Output
On the only line of the output file pattern.out print a string that is a valid pattern to

search for the specified text. It should consist only of lowercase Latin letters, numbers and the
symbols '[', ']', '(', ')', '.', ',', '#', '=' and '?'. The length of the pattern must not
exceed 𝑁𝑁.

Constraints
1 ≤ 𝑁𝑁 ≤ 105

Examples:

Input Output
aaaaaaaaaab [a,10]b
ababxababyababzababz [[ab,2]?(x,y,z),4]
dingdangdongdangdingdongdang [d?(i,a,o)ng,7]
dingdangdongdangdingdongdang #=ngd.di#a#o#a#i#o#ang

Explanation:

 In the first testcase 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑃𝑃) = 7 and 𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑢𝑢(𝑇𝑇,𝑃𝑃) = 0, because in the patterns
there are not question mark.

 In the second testcase 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑃𝑃) = 18 and 𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑢𝑢(𝑇𝑇,𝑃𝑃) = 4 ∗ 3 = 12, because 4 of
the letters in the text are represented by a '?', which can replace 3 different letters.

 In the third testcase 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑃𝑃) = 15 and 𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑢𝑢(𝑇𝑇,𝑃𝑃) = 7 ∗ 3 = 21.

 In the fourth testcase 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑃𝑃) = 22 and 𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑢𝑢(𝑇𝑇,𝑃𝑃) = 0.

Scoring:
For each testcase let minScore is the minimal result among all participants’ solutions and

yourScore is your result, calculated as a sum of the values of the functions 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑃𝑃) +
𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑢𝑢(𝑇𝑇,𝑃𝑃). You will receive 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1

𝑦𝑦𝑚𝑚𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1
× 100 % of the points for that testcase.

Subtasks
Number of tests Constraint for 𝑵𝑵 Additional constraints
1 10% 𝑁𝑁 ≤ 100 None

2 20% 𝑁𝑁 ≤ 1000
𝑇𝑇 is a concatenation of strings with equal

length of at most 4 letters. Among them there
are at most 4 different strings.

3 30% 𝑁𝑁 ≤ 10000 𝑇𝑇 consists of at most 4 different letters
4 40% 𝑁𝑁 ≤ 100000 None

