Points

SEASON 8 - SIXTH ROUND

You are given a set of \mathbf{N} points in a 2D plane. No three points are collinear and all coordinates are integers.

Let's consider all quadrilateral with vertices some of these \mathbf{N} points. We will consider both convex and concave quadrilaterals. Find the largest area of one of these figures.

Write a program points, that calculates the largest possible area of a quadrilateral with vertices and prints this value multiplied by 2.

Input

The first line of the input file points.in contains the integer \mathbf{N} - the number of points. The next \mathbf{N} lines contain the coordinates of the points $-x[1], y[1], x[2], y[2], \ldots, x[N], y[N]$.

Output

The output file points. out must contain the largest possible area multiplied by 2. It is guaranteed that this number will also be an integer.

Constraints

```
\(4 \leq N \leq 2000\)
\(-10^{9} \leq x[i], y[i] \leq 10^{9}\)
```

Time limit: 2 sec
Memory limit: $\mathbf{2 5 6}$ MB

Example test

Input (points.in)	Output (points.out)	
5	7	24
2	9	
1	6	
4	6	
2	4	

