Rolling table

SEASON 9 - FOURTH ROUND

You are given a table of lowercase latin letters with N rows and M columns.

You can take the upper i rows ($0 \le i < N$) and move them to the bottom and then take the leftmost j columns ($0 \le j < M$) and move them to the right (without changing the order). For example if i=2 and j=1 and you have the table abc def ghi you would move the top 2 rows to the bottom: ghi **abc def** and then the leftmost column to the right: hig bca efd

Your task is to find how many distinct pairs i and j would produce a table, identical to the one you started with (the letters at the corresponding positions should be the same)

Input

From the first line of the input file <code>rolling_table.in</code> N and M are entered. On the next N lines M lowercase latin letters are entered - the contents of the table.

Output

In the output file $rolling_table.out$ print the number of distinct pairs i and j, that would produce an identical table

Constraints

 $1 \le N, \; M, \; N*M \le 100\;000$

Time limit: 1.0 seconds Memory limit: 256 MB

SEASON 9 - FOURTH ROUND

Example

Input	Output	Explanation
(rolling_table.in)	(rolling_table.out)	
3 3	3	The table would
bba		remain unchanged
abb		when
bab		(i=0, j=0)
		(i=1, j=1)
		(i=2, j=2)